MHB Proving the Relationship between Cosine and Inverse Sine Functions

  • Thread starter Thread starter Wild ownz al
  • Start date Start date
Wild ownz al
Messages
30
Reaction score
0
Prove:

a) cos(sin-1x) = √(1-x2)

b) cos-1a+cos-1​b = cos-1(ab-√(1-a2)√(1-b2) (edited)

(VERY HARD)
 
Last edited:
Mathematics news on Phys.org
Hi Wild ownz al.

Try using the identity $\cos^2\theta+\sin^2\theta=1$.

(a) We have $\sin^2(\sin^{-1}x)=x^2$ and so
$$\cos^2(\sin^{-1}x)\ =\ 1-\sin^2(\sin^{-1}x)\ =\ 1-x^2$$

$\implies\ \cos(\sin^{-1}x)\ =\ \sqrt{1-x^2}$

taking the positive square root because the range of $\sin^{-1}x$ (for $-1\le x\le1$) is $\displaystyle\left[-\frac{\pi}2,\,\frac{\pi}2\right]$ on which the cos function takes non-negative values.

(b) Check your equation. There should be an equals (“=”) sign, which is missing.
 
Olinguito said:
Hi Wild ownz al.

Try using the identity $\cos^2\theta+\sin^2\theta=1$.

(a) We have $\sin^2(\sin^{-1}x)=x^2$ and so
$$\cos^2(\sin^{-1}x)\ =\ 1-\sin^2(\sin^{-1}x)\ =\ 1-x^2$$

$\implies\ \cos(\sin^{-1}x)\ =\ \sqrt{1-x^2}$

taking the positive square root because the range of $\sin^{-1}x$ (for $-1\le x\le1$) is $\displaystyle\left[-\frac{\pi}2,\,\frac{\pi}2\right]$ on which the cos function takes non-negative values.

(b) Check your equation. There should be an equals (“=”) sign, which is missing.


Hey Olinguito,

I'm a bit confused as to your steps...did you manipulate the left hand side or the right hand side? Also could you start from the given equation? I corrected part b). Thanks.
 
Wild ownz al said:
Prove:

a) cos(sin-1x) = √(1-x2)

b) cos-1a+cos-1​b = cos-1(ab-√(1-a2)√(1-b2) (edited)

(VERY HARD)

(b) let $\theta = \cos^{-1}{a} \implies \cos{\theta} = a \text{ and } \sin{\theta} = \sqrt{1-a^2}$,

also, let $\phi = \cos^{-1}{b} \implies \cos{\phi} = b \text{ and } \sin{\phi} = \sqrt{1-b^2}$$\cos(\theta + \phi) = \cos{\theta}\cos{\phi} - \sin{\theta}\sin{\phi}$

$\cos(\theta + \phi) = ab - \sqrt{1-a^2} \cdot \sqrt{1-b^2}$

$\cos^{-1}\left[\cos(\theta + \phi)\right] = \cos^{-1}\left[ab - \sqrt{1-a^2} \cdot \sqrt{1-b^2}\right]$

$\theta + \phi = \cos^{-1}\left[ab - \sqrt{1-a^2} \cdot \sqrt{1-b^2}\right]$

$\cos^{-1}{a} + \cos^{-1}{b} = \cos^{-1}\left[ab - \sqrt{1-a^2} \cdot \sqrt{1-b^2}\right]$
 
Wild ownz al said:
I'm a bit confused as to your steps...did you manipulate the left hand side or the right hand side? Also could you start from the given equation? I corrected part b). Thanks.

Note that the $\sin$ and $\sin^{-1}$ are inverse functions.

For example, $\sin^{-1}\dfrac12=\dfrac{\pi}6$ and $\sin\dfrac{\pi}6=\dfrac12$; that is to say, $\sin\left(\sin^{-1}\dfrac12\right)=\dfrac12$.

Thus we have $\sin(\sin^{-1}x)=x$ for $-1\le x\le1$.

The rest of my post should be straightforward.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top