MHB Proving the Relationship between Cosine and Inverse Sine Functions

  • Thread starter Thread starter Wild ownz al
  • Start date Start date
AI Thread Summary
The discussion focuses on proving two relationships involving cosine and inverse sine functions. For part (a), it is established that cos(sin⁻¹x) equals √(1-x²) by applying the identity cos²θ + sin²θ = 1. The proof shows that sin²(sin⁻¹x) equals x², leading to the conclusion that cos(sin⁻¹x) must be the positive square root due to the range of the inverse sine function. In part (b), the equation is clarified to include an equals sign, and the proof involves using the definitions of cos⁻¹a and cos⁻¹b to derive the relationship involving the cosine of the sum of angles. The discussion emphasizes the importance of correctly manipulating the equations and understanding the properties of inverse functions.
Wild ownz al
Messages
30
Reaction score
0
Prove:

a) cos(sin-1x) = √(1-x2)

b) cos-1a+cos-1​b = cos-1(ab-√(1-a2)√(1-b2) (edited)

(VERY HARD)
 
Last edited:
Mathematics news on Phys.org
Hi Wild ownz al.

Try using the identity $\cos^2\theta+\sin^2\theta=1$.

(a) We have $\sin^2(\sin^{-1}x)=x^2$ and so
$$\cos^2(\sin^{-1}x)\ =\ 1-\sin^2(\sin^{-1}x)\ =\ 1-x^2$$

$\implies\ \cos(\sin^{-1}x)\ =\ \sqrt{1-x^2}$

taking the positive square root because the range of $\sin^{-1}x$ (for $-1\le x\le1$) is $\displaystyle\left[-\frac{\pi}2,\,\frac{\pi}2\right]$ on which the cos function takes non-negative values.

(b) Check your equation. There should be an equals (“=”) sign, which is missing.
 
Olinguito said:
Hi Wild ownz al.

Try using the identity $\cos^2\theta+\sin^2\theta=1$.

(a) We have $\sin^2(\sin^{-1}x)=x^2$ and so
$$\cos^2(\sin^{-1}x)\ =\ 1-\sin^2(\sin^{-1}x)\ =\ 1-x^2$$

$\implies\ \cos(\sin^{-1}x)\ =\ \sqrt{1-x^2}$

taking the positive square root because the range of $\sin^{-1}x$ (for $-1\le x\le1$) is $\displaystyle\left[-\frac{\pi}2,\,\frac{\pi}2\right]$ on which the cos function takes non-negative values.

(b) Check your equation. There should be an equals (“=”) sign, which is missing.


Hey Olinguito,

I'm a bit confused as to your steps...did you manipulate the left hand side or the right hand side? Also could you start from the given equation? I corrected part b). Thanks.
 
Wild ownz al said:
Prove:

a) cos(sin-1x) = √(1-x2)

b) cos-1a+cos-1​b = cos-1(ab-√(1-a2)√(1-b2) (edited)

(VERY HARD)

(b) let $\theta = \cos^{-1}{a} \implies \cos{\theta} = a \text{ and } \sin{\theta} = \sqrt{1-a^2}$,

also, let $\phi = \cos^{-1}{b} \implies \cos{\phi} = b \text{ and } \sin{\phi} = \sqrt{1-b^2}$$\cos(\theta + \phi) = \cos{\theta}\cos{\phi} - \sin{\theta}\sin{\phi}$

$\cos(\theta + \phi) = ab - \sqrt{1-a^2} \cdot \sqrt{1-b^2}$

$\cos^{-1}\left[\cos(\theta + \phi)\right] = \cos^{-1}\left[ab - \sqrt{1-a^2} \cdot \sqrt{1-b^2}\right]$

$\theta + \phi = \cos^{-1}\left[ab - \sqrt{1-a^2} \cdot \sqrt{1-b^2}\right]$

$\cos^{-1}{a} + \cos^{-1}{b} = \cos^{-1}\left[ab - \sqrt{1-a^2} \cdot \sqrt{1-b^2}\right]$
 
Wild ownz al said:
I'm a bit confused as to your steps...did you manipulate the left hand side or the right hand side? Also could you start from the given equation? I corrected part b). Thanks.

Note that the $\sin$ and $\sin^{-1}$ are inverse functions.

For example, $\sin^{-1}\dfrac12=\dfrac{\pi}6$ and $\sin\dfrac{\pi}6=\dfrac12$; that is to say, $\sin\left(\sin^{-1}\dfrac12\right)=\dfrac12$.

Thus we have $\sin(\sin^{-1}x)=x$ for $-1\le x\le1$.

The rest of my post should be straightforward.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top