TelusPig
- 15
- 0
Moment generating functions:
How can I show that Var(X)=\frac{d^2}{dt^2}ln M_X(t)\big |_{t=0}
Recall:
M_X(t)=E(e^{tx})=\int_{-\infty}^{\infty}e^{tx}f(x)dx
E(X^n)=\frac{d^n}{dt^n}M_X(t)\big |_{t=0}
Var(X)=E(X^2)-[E(X)]^2=E[(X-E(X))^2]
------------
I tried just applying the equation given but I don't know what to do with the log of this general integral?
\frac{d^2}{dt^2}ln M_X(t)=\frac{d^2}{dt^2}ln \left( \int_{-\infty}^{\infty}e^{tx}f(x)dx \right)
How can I show that Var(X)=\frac{d^2}{dt^2}ln M_X(t)\big |_{t=0}
Recall:
M_X(t)=E(e^{tx})=\int_{-\infty}^{\infty}e^{tx}f(x)dx
E(X^n)=\frac{d^n}{dt^n}M_X(t)\big |_{t=0}
Var(X)=E(X^2)-[E(X)]^2=E[(X-E(X))^2]
------------
I tried just applying the equation given but I don't know what to do with the log of this general integral?
\frac{d^2}{dt^2}ln M_X(t)=\frac{d^2}{dt^2}ln \left( \int_{-\infty}^{\infty}e^{tx}f(x)dx \right)