mathsss2
- 38
- 0
Use:
2\cdot4\cdot...\cdot(p-1)\equiv(2-p)(4-p)\cdot...\cdot(p-1-p)\equiv(-1)^{\frac{(p-1)}{2}}\cdot1\cdot3\cdot...\cdot(p-2) mod p
and
(p-1)!\equiv-1 mod p [Wilson's Theorem]
to prove
1^2\cdot3^2\cdot5^2\cdot...\cdot(p-2)^2\equiv(-1)^{\frac{(p-1)}{2}} mod p
Relevant equations
Gauss lemma
wilson's theorem [(p-1)!\equiv-1 modp]
The attempt at a solution
need assistance
Thanks
2\cdot4\cdot...\cdot(p-1)\equiv(2-p)(4-p)\cdot...\cdot(p-1-p)\equiv(-1)^{\frac{(p-1)}{2}}\cdot1\cdot3\cdot...\cdot(p-2) mod p
and
(p-1)!\equiv-1 mod p [Wilson's Theorem]
to prove
1^2\cdot3^2\cdot5^2\cdot...\cdot(p-2)^2\equiv(-1)^{\frac{(p-1)}{2}} mod p
Relevant equations
Gauss lemma
wilson's theorem [(p-1)!\equiv-1 modp]
The attempt at a solution
need assistance
Thanks