Proving Wilson's Theorem Using Gauss' Lemma

  • Thread starter Thread starter mathsss2
  • Start date Start date
  • Tags Tags
    Theorem
mathsss2
Messages
38
Reaction score
0
Use:
2\cdot4\cdot...\cdot(p-1)\equiv(2-p)(4-p)\cdot...\cdot(p-1-p)\equiv(-1)^{\frac{(p-1)}{2}}\cdot1\cdot3\cdot...\cdot(p-2) mod p
and
(p-1)!\equiv-1 mod p [Wilson's Theorem]
to prove
1^2\cdot3^2\cdot5^2\cdot...\cdot(p-2)^2\equiv(-1)^{\frac{(p-1)}{2}} mod p

Relevant equations

Gauss lemma
wilson's theorem [(p-1)!\equiv-1 modp]

The attempt at a solution
need assistance

Thanks
 
Physics news on Phys.org
Hint:

2 \cdot 4 \cdot \ldots \cdot (p-1)=\frac{(p-1)!}{1 \cdot 3 \cdot \ldots \cdot (p-2)}=(p-1)! \cdot \left( \frac{1}{1 \cdot 3 \cdot \ldots \cdot (p-2)} \right)
 
Thanks, this problem is solved.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top