Prove f(P) = 0 for Any Point P in the Plane | Putnam A1 Question Help

  • Thread starter Thread starter john562
  • Start date Start date
AI Thread Summary
The discussion centers on proving that if a real-valued function f satisfies the condition f(A) + f(B) + f(C) + f(D) = 0 for every square ABCD in the plane, then f(P) must equal 0 for any point P. The proof involves considering a square centered at point P and examining the midpoints of its sides, leading to a series of equations that ultimately show 0 = 4f(P). A participant expresses confusion about the reasoning behind the equations involving smaller squares within ABCD, questioning how their sums also equal zero. The conversation highlights the clarity of the proof while addressing the challenge some may face in understanding the logic behind it. The problem is noted as potentially one of the easier questions from the Putnam competition.
john562
Messages
8
Reaction score
0
Question:
Let f be a real-valued function on the plane such that
for every square ABCD in the plane, f(A) + f(B) +
f(C) + f(D) = 0. Does it follow that f(P ) = 0 for all
points P in the plane?

Answer:
Yes, it does follow. Let P be any point in the plane. Let
ABCD be any square with center P . Let E; F; G; H
be the midpoints of the segments AB; BC; CD; DA,
respectively. The function f must satisfy the equations
0 = f(A) + f(B) + f(C) + f(D)
0 = f(E) + f(F ) + f(G) + f(H)
0 = f(A) + f(E) + f(P ) + f(H)
0 = f(B) + f(F ) + f(P ) + f(E)
0 = f(C) + f(G) + f(P ) + f(F )
0 = f(D) + f(H) + f(P ) + f(G):
If we add the last four equations, then subtract the first
equation and twice the second equation, we obtain 0 =
4f(P ), whence f(P ) = 0.

Comments:
I don't understand why
0 = f(A) + f(E) + f(P ) + f(H)
0 = f(B) + f(F ) + f(P ) + f(E)
0 = f(C) + f(G) + f(P ) + f(F )
0 = f(D) + f(H) + f(P ) + f(G)?
 
Mathematics news on Phys.org
Those are smaller squares within the larger square ABCD. To be specific, they are the four quarters of ABCD
 
I don't understand how adding them equals zero.
 
what is this? like the easiest putnam problem ever?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top