MHB Q01 are linearly independent vectors, so are....

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Let A be invertible. Show that, if $\textbf{$v_i,v_2,v_j$}$ are linearly independent vectors, so are \textbf{$Av_1,Av_2,Av_3$}

https://drive.google.com/file/d/1OuHxfUdACbpK4E5aca2oBzdaxGR0IYKv/view?usp=sharing
p57.png


ok I think this is the the definition we need for this practice exam question,
However I tried to insert using a link but not successful
I thot if we use a link the image would always be there unless we delete its source

as to the question... not real sure of the answer since one $c_n$ may equal 0 and another may not

Anyway Mahalo...
 
Physics news on Phys.org
Yes, that is the definition of "linearly independent" you need. Now, what are you trying to prove?

You have "Show that, if $v_1$, $v_2$, $v_3$ are linearly independent, then so are $Av_1$, $Av_2$, $Av_3$" but what is "A"? If it is a general linear transformation this is not true. If A is an INVERTIBLE linear transformation then it is true and can be shown by applying $A^{-1}$ to both sides of$x_1Av_1+ x_2Av_2+ x_3Av_3= 0$.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top