QFT Peskin Errata: Pauli Vilars Regularization & Ward Takahashi Identity

  • Thread starter Thread starter simic4
  • Start date Start date
  • Tags Tags
    Peskin Qft
simic4
Messages
20
Reaction score
0
Hi,

This is regarding showing, in ch.7, around p.220, that the Pauli Vilars regularization technique is consistent with the ward takahashi identity.

I cannot get the following to work:

I add eq. 7.31 to eq. 7.32 and do not get zero. I get alpha over 4 pi.
(I am left with integral ( 1 - z) * alpha over 2 pi )


we are supposed to show it is zero. i ve checked it and some of the preceding results a few times but cannot get it.

what am i missing. can anyone confirm the problem?

Id really appreciate it! its making me a little nuts.

thanks!

simic
 
Physics news on Phys.org
I shall give it a go for you, it's pretty straightforward, you've probably just made some small cock up somewhere, I do it all the time.

\delta Z_2+\delta F_1(0)=\frac{\alpha}{2\pi}\int^1_0dz\left[-z\log\frac{z\Lambda^2}{(1-z)^2m^2+z\mu^2}+2(2-z)\frac{z(1-z)m^2}{(1-z)^2m^2+z\mu^2}+(1-z)\log\frac{z\Lambda^2}{(1-z)^2m^2+z\mu^2}+(1-z)\frac{(1-4z+z^2)m^2}{(1-z)^2m^2+z\mu^2}\right]
=\frac{\alpha}{2\pi}\int^1_0dz\left[(1-2z)\log\frac{z\Lambda^2}{(1-z)^2m^2+z\mu^2}+\frac{(1-z^2)(1-z)m^2}{(1-z)^2m^2+z\mu^2}\right]

Because, as I'm sure you've already worked out,

(1-z)\frac{(1-4z+z^2)m^2}{(1-z)^2m^2+z\mu^2}+2(2-z)\frac{z(1-z)m^2}{(1-z)^2m^2+z\mu^2}=\frac{(1-z^2)(1-z)m^2}{(1-z)^2m^2+z\mu^2}

Now split the log up

\int^1_0dz(1-2z)\log\frac{z\Lambda^2}{(1-z)^2m^2+z\mu^2}=\int^1_0dz\left[(1-2z)\log\frac{\Lambda^2}{(1-z)^2m^2+z\mu^2}+(1-2z)\log z\right]
=\int^1_0dz\left[(1-z)-\frac{(1-z^2)(1-z)m^2}{(1-z)^2m^2+z\mu^2}+(1-2z)\log z\right]

Plugging that back in gives

\delta Z_2+\delta F_1(0)=\frac{\alpha}{2\pi}\int^1_0dz\left[(1-z)+(1-2z)\log z\right]=0

As

\int^1_0dz(1-z)=-\int^1_0dz(1-2z)\log z=\frac{1}{2}

I presumably did the same as you first time, as I got \alpha/4\pi, I forgot the extra logarithm you're left over with at the end, or you just didn't notice that P&S had split it up in the first place (if you don't split it up, i.e. leave the z in the numerator of the log, the integration by parts they performed for you diverges).
 
Last edited:
Hey thanks a million.

I forgot to split up the log, completely missed it :).

sim.
 
Qutie alright
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Back
Top