I QM: I as an Observable & Its Eigenvectors & Eigenvalue

Marrrrrrr
Messages
4
Reaction score
0
So, hermitian linear operators represent observables in QM. I (a matrix whose elements are all 1) is certainly a hermitian linear operator. Does this mean that I represent a measurable property? If so, what do we call that property? Identity? Moreover, for any state-vector A, A would be an eigenvector of I with the eigenvalue of 1. What does this all mean? What are the physical meaning of I as an observable (if it is) and its eigenvectors and the eigenvalue? How can we 'measure' I to get the value 1?
 
Physics news on Phys.org
Marrrrrrr said:
I (a matrix whose elements are all 1)

The symbol ##I## is usually used to denote the identity matrix (which has 1's all along the diagonal and 0's elsewhere). Is that what you meant? Or did you actually mean a matrix with every single element (off diagonal as well as on) 1?

I suspect you mean the identity matrix, since you say this:

Marrrrrrr said:
for any state-vector A, A would be an eigenvector of I with the eigenvalue of 1.

Which is true for the identity matrix, but false for a matrix with all elements 1.
 
Interesting question... so the eigenvalues are 1. That means the result of any measurement is 1. And 1 commutes with any Hamiltonian, so it is conserved in any system. The expectation value is also 1, so the average value of this observable is one.

So if you have a black box that, whenever you apply it to any system, it gives you back a 1. That is the measurement. Not a very interesting black box, I might add, since no matter what you do with it it gives you back the same result.
 
  • Like
Likes Demystifier
Gene Naden said:
Not a very interesting black box, I might add, since no matter what you do with it it gives you back the same result.

Yes. The identity matrix is the mathematical description of the physical operation "do nothing at all". Which just gives you back whatever state you hand it, multiplied by the eigenvalue ##1##, i.e., the same state.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top