# [QM] Total angular momentum rotation operator

#### Rovello

1. The problem statement, all variables and given/known data
How to prove that for any representation of the spin, the state $$e^{-i{\pi}J_x/\hbar}|j,m\rangle$$
is proportional to $$|j,-m\rangle$$
The exponential term is the rotation operator where $J_x$ is the x-component of the total angular momentum operator,
and $|j,m\rangle$ is an eigenket.

2. Relevant equations

$J_x=\frac{1}{2}(J_+ + J_-)$ where $J_+$ and $J_-$ are the ladder operators.
$J_±|j,m\rangle=\sqrt{(j{\mp}m)(j±m+1)}|j,m±1>$

3. The attempt at a solution
Taylor series expansion of the exponential term?
$e^{-i{\pi}J_x/\hbar}=1-i\frac{{\pi}J_x}{\hbar} - \frac{1}{2}(\frac{{\pi}J_x}{\hbar})^2 +...$

Related Advanced Physics Homework News on Phys.org

#### cosmic dust

You have to use the equation:

$U\left[ {{R}_{1}}\left( \pi \right) \right]{{J}_{3}}{{U}^{-1}}\left[ {{R}_{1}}\left( \pi \right) \right]=-{{J}_{3}}$

which comes from the transformation law of the rotation generators:

$U\left( R \right){{J}^{ij}}{{U}^{-1}}\left( R \right)={{R}_{k}}^{i}{{R}_{\ell }}^{j}{{J}^{k\ell }}$

Now consider the eigen-value equation:

${{J}_{3}}\left| jm \right\rangle =m\left| jm \right\rangle$

and make the $U\left[ {{R}_{1}}\left( \pi \right) \right]{{J}_{3}}{{U}^{-1}}\left[ {{R}_{1}}\left( \pi \right) \right]$ appear in it, like that:

${{J}_{3}}\left| jm \right\rangle =m\left| jm \right\rangle \Rightarrow U{{J}_{3}}{{U}^{-1}}U\left| jm \right\rangle =mU\left| jm \right\rangle \Rightarrow -{{J}_{3}}U\left| jm \right\rangle =mU\left| jm \right\rangle$

This shows that $U\left| jm \right\rangle \equiv \exp \left( -i\pi {{J}_{1}} \right)\left| jm \right\rangle$ is an eigen-state of ${{J}_{3}}$ , which corresponds to the eigen-value $-m$ .

#### Rovello

Thank you, cosmic dust!

I have one question (doubt),

if $U|j,m\rangle$ is an eigen-state of $J_z$, therefore $U|j,m\rangle=|j,-m\rangle$, because $J_z(U|j,m\rangle)=J_z|j,-m\rangle=-m|j,-m\rangle$.

Isn't it?

#### cosmic dust

Almost... To show that a state is an eigenstate of some operator, all you have to do is to show that when that operator acts on that state, gives the same state multiplied by some constant (like the last of the equalities I presented). In general, U|jm> does not have to be equal to |j,-m>, since it can be any state of the form z|j,-m>, where z is a phase factor. But, without loss of generality, you can always redifine the eigenstates of J3 or J3 its self, in such a way that the phase factor gets absorbed by the new definitions.

#### Rovello

Ok! Thank you so much!

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving