- #1
saadsarfraz
- 86
- 1
Q- A number is a quadratic residue modulo m if it takes the form x[tex]^{2}[/tex] mod m
for some integer x. List the quadratic residues modulo 3, 4, 5, and 7. What
patterns, if any, do you notice?
modulo 7
0^2=0, 1[tex]^{2}[/tex]=1, 2[tex]^{2}[/tex]=4, 3[tex]^{2}[/tex]=2, 4[tex]^{2}[/tex]=2, 5[tex]^{2}[/tex]=4, 6[tex]^{2}[/tex]=1
modulo 5
0^2=0, 1[tex]^{2}[/tex]=1, 2[tex]^{2}[/tex]=4, 3[tex]^{2}[/tex]=4, 4[tex]^{2}[/tex]=2
modulo 4
0^2=0, 1[tex]^{2}[/tex]=1, 2[tex]^{2}[/tex]=0, 3[tex]^{2}[/tex]=1
modulo 3
0^2=0, 1[tex]^{2}[/tex]=1, 2[tex]^{2}[/tex]=1
I don't to see any patterns?
for some integer x. List the quadratic residues modulo 3, 4, 5, and 7. What
patterns, if any, do you notice?
modulo 7
0^2=0, 1[tex]^{2}[/tex]=1, 2[tex]^{2}[/tex]=4, 3[tex]^{2}[/tex]=2, 4[tex]^{2}[/tex]=2, 5[tex]^{2}[/tex]=4, 6[tex]^{2}[/tex]=1
modulo 5
0^2=0, 1[tex]^{2}[/tex]=1, 2[tex]^{2}[/tex]=4, 3[tex]^{2}[/tex]=4, 4[tex]^{2}[/tex]=2
modulo 4
0^2=0, 1[tex]^{2}[/tex]=1, 2[tex]^{2}[/tex]=0, 3[tex]^{2}[/tex]=1
modulo 3
0^2=0, 1[tex]^{2}[/tex]=1, 2[tex]^{2}[/tex]=1
I don't to see any patterns?
Last edited: