Quantum Calculus: Fund. Theorem & Plank Time?

  • Thread starter Thread starter duffbeerforme
  • Start date Start date
  • Tags Tags
    Calculus Quantum
duffbeerforme
Messages
6
Reaction score
0
Hi, first post. I'm not a physics buff at all and this is probably an easy question to answer.
when looking at the fundamental theorem of calculus you take the limit as say t goes to zero (t being time). But does quantum physics say that t is not continuous.. something like a smallest time step such as plank time?.. and would this change calculus when dealing with real world problems?

thanks
 
Physics news on Phys.org
Well, t need not be time, and as far as calculus is concerned, it can be anything. In quantum mechanics time and space are usually treated as being continuous variables, and it is usually only when you throw gravity (or field theory) in the mix that you need to ask questions about discreteness of time.

Aside: In quantum mechanics, things are sometimes discrete and sometimes not. It's not fundamental to quantum mechanics, but rather the spaces on which the quantities are defined. For example, angles live on a compact space, and so angular momentum gets quantized. On the other hand, distances are unbounded and so these aren't quantized.

Back to your question. I don't know if this would really change real-world problems. The definition of a limit says that you never actually have to take t=0, but just "as close as you need to". That's sort of the heart of the delta-epsilon definition of the limit.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Replies
5
Views
959
Replies
10
Views
2K
Replies
7
Views
3K
Replies
25
Views
2K
Replies
40
Views
6K
Replies
1
Views
1K
Back
Top