Quantum coherence in a gas sample

DaTario
Messages
1,096
Reaction score
46
Pascal principle with light pressure

Hello,

Supose you have an U tube, in which the inner walls are made absolutelly reflective. Now, put a termical state (temperature T) for the radiation field inside the tube and close it with reflective discs which can slide without friction. Supose further that de diameter of the tube in its terminations are not equal. For the sake of definiteness, let's assume 2 sq meters cross section in one side and 10 sq meters in the other. My question is: Taking into account light pressure effects , is the Pascal principle valid in this context ?
 
Last edited:
Physics news on Phys.org
Hello Greg, no, but I still have some excitation about it. Do you have any info or comment?

Editing: only reading again I noticed that the title has some mistake in it. In my question, the tube should have inside only vacuum and light. Interesting to note.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Replies
2
Views
2K
Replies
5
Views
3K
Replies
5
Views
3K
Replies
1
Views
4K
Replies
10
Views
3K
Back
Top