Quantum Computing: Difference vs Normal Computers

MasterSashin04
Messages
1
Reaction score
0
Hi i just wanted to know what the main difference between quantum computers and normal computers are?
Is it that a Qubit can be 1 and 0 at the same time... becaus that is what i found after i researched however my friend states that the quantum computer can run many different sets of code at the same time instead of one. Or can work with an infinite amount of binary code.
Please help
 
Physics news on Phys.org
It isn't just that a qubit can be 1 and 0 simultaneously; it can simultaneously be everything between those 2 values. This theroretically allows for computations to be performed many, many times faster than current computers. The current iteration of the quantum computer (I am only aware of one at this time) may not actually be a quantum computer. One problem is the designers and builders aren't totally sure how it works. They only know it can perform certain computations much faster than conventional devices. It would be useless on your desktop.
 
If you already know some computer science, then this post about Grover's algorithm might clarify what's going on a bit.

Basically quantum mechanics allows superpositions of classical states, meaning you get to assign a complex weight to every possible state instead of only being in one. Quantum mechanics also allows you to apply matrix operations to these large vectors of state weightings. So you get to do huge matrix multiplications very cheaply, but you have to deal with the fact that you only get to sample from the results (i.e. the superposition collapses when you measure the state) and that the type of matrix you can use is quite restrictive (i.e. must be reversible and must preserve total probability in all cases).

Although it might not be so clear on its own, here's an animation of the Quantum Fourier Transform (which uses only ~log(N)^2 gates to Fourier transform N amplitudes and is a crucial part of Shor's factoring algorithm):

KRybZYE.gif
 
Hi,
In any form of computation, there is a physical construct behind it. The fundamental difference between quantum computing and classical computing is due to the different structure used. For example, in classical computing, a bit can be represented by a transistor. Physical quantities(like electric field, current density etc) associated with the transistor determine the value of this bit. So, the value of the bit represents some physical property. The value of the bit can be changed by manipulating the system physically, maybe by applying an external magnetic field. So, the operator or "a logic gate" represents a physical manipulation. The limitations and the capabilities of the physical construct is what determines the limitations and capabilities of the computation.
You would need to understand QM in order to understand the representation of a bit(qubit) and the operations that can be used(operators). This is what makes quantum computing different from classical computing.
I can point some features of QM that makes QC what it is,
1) Principle of superposition of multiple wave functions
2) Correlation between multiple bits(qubits) or quantum entanglement

Some popular advantages in QC over CC,
1) Grovers search algorithm(faster than binary search algorithm)
2) Shors Algorithm to find prime factors(works great under some constraints)

Correct me if I am wrong somewhere.
Hope it helps.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top