This is a problem to a practice qualifying exam for graduate students.(adsbygoogle = window.adsbygoogle || []).push({});

A series of marbles, each with mass m, is dropped from a height H directly above a line on the ground. Although a high precision dropping device is used, each marble does not land on the line. Show that the typical distance from the line where a marble lands is

delta_x=(h_bar/m)^(1/2)*(2H/g)^(1/4)

I'm thinking of the uncertainty principle delta_x*delta_p>=h_bar/2 but other than that, I don't know how to solve this problem.

Trying to use the schrodinger equation to come up with <x>^2 and <x^2>

in order to get (delta_x)^2 = <x^2> - <x>^2 seems pretty much impossible since the potential used here is gravitational and written in the form V = mg(H-x), so therefore to find the wavefunction, you have a differential equation with variable coefficients (which requires a complicated power series), and will take a lot of time.

There should be an easy way to solve this since this is an exam problem.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Quantum mechanical problem/marbles

**Physics Forums | Science Articles, Homework Help, Discussion**