Quantum Mechanics and Group Theory questions

Click For Summary
The discussion revolves around the relationship between wavefunctions in quantum mechanics and U(1) transformations. It is confirmed that multiplying a wavefunction by a phase factor corresponds to a U(1) transformation. The conversation also explores the implications of Berry's Phase and Dynamical Phase, noting that if the adiabatic approximation holds and the Hamiltonian's path is closed, the acquired geometric phase represents a specific U(1) transformation. Participants express some dissatisfaction with the conceptual clarity provided by the textbook used, Griffiths. Overall, the thread emphasizes the connection between quantum mechanics and group theory through phase transformations.
Nomajere
Messages
2
Reaction score
0
Hello all. I am new here. I am in the last quarter of a 3 quarter sequence of undergrad quantum mechanics and I just had some conceptual questions (nothing pertaining to homework). We just recently covered Berry's Phase and the Dynamical Phase. Now I wanted to start with a more basic quantum mechanical question before moving to Berry's Phase:

When determining a wavefunction $$\psi$$ we can pretty much derive a wavefunction "up to" a phase, i.e $$\psi = A \left(functions\right) e^{i \chi}$$ Now, if I am understanding elementary group theory correctly, a U(1) transformation would be multiplying our initial function by a complex exponential with a phase. So, is the wavefunction I wrote "up to a phase" basically transformed by U(1)?

Okay, assuming what I first asked is legitimate, I wanted to ask about Berry and Dynamical Phases. Through the adiabatic approximation we can write $$\Psi_n\left(t\right) = \psi_n \left(t \right) e^{i \theta_n \left(t \right)} e^{i \gamma_n \left(t \right)} $$. My question here is if any of this may be similar or is a U(1) transformation, or is it not so because of the possible time dependence?

Relevant equations:
$$\theta_n \left(t \right) =-\frac{1}{\hbar} \int_{0}^{t} E_n\left(t'\right) dt'$$

$$\gamma_{n} \left(t \right) = i \int_{0}^{t} \langle \psi_m\left(t'\right) | \frac{\partial}{\partial t'} \psi_{m}\left(t' \right) \rangle dt'$$

Thank you all for your patience and help!
 
Physics news on Phys.org
I'm not sure I'm understanding your two questions but I will try to do the best with my (not that extensive) knowledge of the matter

- Yes, multiplying by a phase is equivalent to doing a U(1) transformation.

- if the adiabatic approximation is valid and If the path is closed, meaning H(T)=H(t=0), then yes the acquired geometrical phase is a very specific U(1) transformation linking the psi(t=0) original vector to the psi(T) final vector. It is specific in the sense that it depend on the path traveled by the hamiltonian (or more generally the path traveled in the projective hilbert space).
 
andresB said:
I'm not sure I'm understanding your two questions but I will try to do the best with my (not that extensive) knowledge of the matter

- Yes, multiplying by a phase is equivalent to doing a U(1) transformation.

- if the adiabatic approximation is valid and If the path is closed, meaning H(T)=H(t=0), then yes the acquired geometrical phase is a very specific U(1) transformation linking the psi(t=0) original vector to the psi(T) final vector. It is specific in the sense that it depend on the path traveled by the hamiltonian (or more generally the path traveled in the projective hilbert space).

Thank you! That was basically what I was looking for. We are using Griffiths, which when it comes to showing me how to do quantum problems, is great. Conceptually, I am not too happy with it all the time.
 
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K