Quantum Mechanics: Linear and Circular polarization states

Robben
Messages
166
Reaction score
2

Homework Statement



Evaluate the matrix elements ##
{\mathbb S}=\left( \begin{array}{cc} \langle x|\mathbb{\hat J}_z|x\rangle& \langle x|\mathbb{\hat J}_z|y\rangle\\
\langle y|\mathbb{\hat J}_z|x\rangle &\langle y|\mathbb{\hat J}_z|y\rangle\end{array}\right)## by expressing the linear polarization states ##|x\rangle## and ##|y\rangle## in terms of the circular polarization states ##|R\rangle## and ##|L\rangle.##

Homework Equations



##|R\rangle = \frac{1}{\sqrt{2}}\left(|x\rangle+i|y\rangle\right)##
##|L\rangle = \frac{1}{\sqrt{2}}\left(|x\rangle-i|y\rangle\right)##

The Attempt at a Solution



I worked out ##|x\rangle## and ##|y\rangle## and got:

##|x\rangle=\frac{1}{2}\left(|R\rangle+|L\rangle\right)##
##|y\rangle = \frac{-i}{\sqrt{2}}\left(|R\rangle-|L\rangle\right)##.

To get ##\mathbb{S},## do I just work out:

##
{\mathbb S}=\left( \begin{array}{cc}
\langle x \mid \mathbb{I} \ \mathbb{\hat J}_z \mathbb{I} \mid x \rangle
& \langle x \mid \mathbb{I} \ \mathbb{\hat J}_z \mathbb{I} \mid y \rangle \\
\langle y \mid \mathbb{I} \ \mathbb{\hat J}_z \mathbb{I} \mid x \rangle & \langle y \mid \mathbb{I} \ \mathbb{\hat J}_z \mathbb{I} \mid y \rangle \end{array}\right) =
\left( \begin{array}{cc}
\langle x \mid \pm z\rangle \langle \pm z | \ \mathbb{\hat J}_z |\pm z\rangle \langle \pm z \mid x \rangle
& \langle x \mid \pm z\rangle \langle \pm z | \ \mathbb{\hat J}_z |\pm z\rangle \langle \pm z \mid y \rangle \\
\langle y \mid \pm z\rangle \langle \pm z | \ \mathbb{\hat J}_z |\pm z\rangle \langle \pm z \mid x \rangle & \langle y \mid \pm z\rangle \langle \pm z | \ \mathbb{\hat J}_z |\pm z\rangle \langle \pm z \mid y \rangle \end{array}\right) \ ?
##
 
Last edited:
Physics news on Phys.org
Hi. You need to find out from your coursework what the action of Jz is on |R> and |L>, that's the whole point of using them instead of |x> and |y>...
 
Goddar said:
Hi. You need to find out from your coursework what the action of Jz is on |R> and |L>, that's the whole point of using them instead of |x> and |y>...

I am not understanding. So what I did was wrong?

The question asks to express ##|x\rangle## and ##|y\rangle## in terms of ##|R\rangle## and ##|L\rangle##.
 
That you did. But then you need to plug these relations in your matrix instead of what you did in the last part, which is what your question was about right?
 
So I did do it correctly and all I have to do is plug in the equations. Thank you!
 
Yes but then you'll still have to evaluate the matrix elements! And for that you'll need to know what <R| Jz|R> gives, for example...
Good luck.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top