Demystifier said:
Thanks for the remarks.
Note however that my paper is not intended to be an exchaustive review with all relevant references, but rather an introductory pedagogic review.
I don't demand the paper to be complete. I would be happy if it was correct, but it is not.
On first four pages you perpetuate more myths than you demistify. To be precise
you demistify none.
1. You start well with the observation that QM provides probabilities that have been confirmed in numerous experiments. Then you try to argue that an electron is a wave
rather than a particle. How do you know that QM describes a single electron?
From the introduction one would expect that QM is about statistical ensambles (i.e.
a wave function of ELECTRON corresponds to the ensamble of electrons, independently
prepared and handled) rather than to a single particle. Deduction of properties
of a member of the ensamble from the wave function needs justification. Do you have one?
What you actually do is to ascribe wave- or particle-like properties to an ensamble.
2. In the section with Heisenberg uncertainties you write that "one cannot measure both the particle momentum and the particle position with arbitrary accuracy". Can you back
this statement up with any evidence? Experiment shows that if you prepare N quantum
objects in state |psi> each then measurement of position on N/2 of them and measurement of momentum on the second half will give dispersions related by the
Heisenberg uncertainty. It says nothing about measurement of position and momentum
of a single particle, does it?
3. Along those lines, can anybody predict an outcome of an experiment performed
on a single quantum object like a single electron passing through double slit? Can anybody
tell where the electron will hit a screen with certainty? If the answer is NO then QM does
not describe a single electron but an ensamble of single electrons.
4. You argument on time-energy uncertainty is bad. You say that because time is
not an operator in QM but a mere parameter then pluggin it into Heisenberg uncertainty
makes no sense. Well, it makes sense. A parameter is a special case of an self-adjoint
operator and one can introduce it into the uncertainty relation. The problem is that
the relation becomes 0 >= 0, which in turn does not give any grounds for the uncertainty
relations.
5. You defend non-existence of time operator in QM referring to the wrong argument
by Pauli. In fact one can construct a self-adjoint operator that has dimension of time
and is dual to a bounded from bellow Hamiltonian!
6. The argument against some time-energy uncertainty relation relays on a counterexamples. Bohm and Aharonov provided one counterexample to the
Landau's uncertainty relation and I gave
a class of counterexamples that handle all discrete spectrum quantum systems
and most of the false time-energy uncertainty relations.
7. There are valid time-energy uncertainty relations. They are rigorously derived from
axioms of QM. One of them worked out by Mandelshtam and Tamm in 1945. You will find
a reference in the Bohm and Aharonov's paper.
The myths in QM are still in the textbooks and it is very difficult to get rid of them.
If you care fighting them, do it right.
Cheers!