carllacan
- 272
- 3
Homework Statement
A particle with electrical charge q and mass m is in a electromagnetic field described by \phi (\vec{r}, t) and A(\vec{r}, t). Its Hamiltonian is as follows:
H = \frac{1}{2m} \left ( \frac{\hbar}{i}\vec{\nabla}-\frac{q}{c} \vec{A} (\vec{r}, t) \right ) ^2 +q\phi (\vec{r}, t)
The conservation of charge guarantees the continuity equation is fulfilled:
\frac{\partial}{\partial t} \rho (\vec{r},t)+\vec{\nabla}·\vec{j}(\vec{r},t) = 0,
where \rho = q\left|\Psi(x)\right|^2 is the charge density.
Find the current density \vec{j}(\vec{r},t)
Homework Equations
The Hamiltonian of a particle in an electromagnetic field.
H = \frac{1}{2m} \left ( \frac{\hbar}{i}\vec{\nabla}-\frac{q}{c} \vec{A} (\vec{r}, t) \right ) ^2 +q\phi (\vec{r}, t)
The continuity equation
\frac{\partial}{\partial t} \rho (\vec{r},t)+\vec{\nabla}·\vec{j}(\vec{r},t) = 0
The Attempt at a Solution
I've tried stating the time-dependent Shcrodinger equation \hat{H}\Psi (x) = i\hbar\frac{\partial \Psi(x)}{\partial t} and solve for the time-derivative of the wavefunction, which gives:
\frac{\partial \Psi}{\partial t} = \left [ \frac{\vec{\nabla}^2}{2m}+\frac{q}{\hbar imc}\vec{A}\vec{\nabla}-\frac{1}{2\hbar^2 m} \left( \frac{q}{c} \vec{A}\right )^2 -\frac{q}{2 \hbar m}\phi\right]\Psi
Then
\frac{\partial\rho}{\partial t} = q2|\Psi(x)|\frac{\partial |\Psi(x)|}{\partial t} = \left [ \frac{q\vec{\nabla}^2}{m}+\frac{2q^2}{\hbar imc}\vec{A}\vec{\nabla}-\frac{q}{\hbar^2 m} \left( \frac{q}{c} \vec{A}\right )^2 -\frac{q^2}{ \hbar m}\phi\right]\Psi^2
And then, from the continuity equation we get
\vec{\nabla}·\vec{j}(\vec{r},t) = \frac{\partial}{\partial t} \rho (\vec{r},t) = \left [ \frac{q\vec{\nabla}^2}{m}+\frac{2q^2}{\hbar imc}\vec{A}\vec{\nabla}-\frac{q}{\hbar^2 m} \left( \frac{q}{c} \vec{A}\right )^2 -\frac{q^2}{ \hbar m}\phi\right]\Psi^2
But I'm stuck there. How do I "remove" the nabla operators?
Last edited: