Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

B Quark confinement and the Higgs mechanism

  1. Feb 27, 2018 #21
    I wouldn't call them that.
     
  2. Feb 27, 2018 #22
    Ok.. let it be called Enhanced QCD then (or what is the term for this)...

    Do you or others know of any enhanced QCD where SU(3) is just part of a larger symmetry within QCD yet doesn't have any preons or subquarks? Something that is not GUT based but right here at the low energy or condense matter sector.
     
  3. Feb 27, 2018 #23
    Why? I don't understand where you are going with this.
     
  4. Feb 27, 2018 #24
    We know that new physics does not occur at EW breaking scale - it was just probed by LHC and found consistent with SM (modulo hints of something fishy with muons). The model you look for would not match experiment.
     
  5. Feb 27, 2018 #25
    It’s replies like this that turn promising minds off of this sight. Try being a little more supportive. I suggest you rephrase and simply direct the questionnaire to Wilczek’s paper instead of slamming the question as not meeting your standard of knowledge. The questionnaire may have been researching and stumbled onto something that puzzled him or her? Jeeeez!!!!!
     
  6. Feb 27, 2018 #26

    Orodruin

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member
    2017 Award

    Excuse me? I did not "slam" the question anywhere. This is purely your interpretation and therefore your problem. I factually stated that reading original research papers in order to learn is not the best way of going about things. Your suggestion to direct to Wilczek's thesis (not paper) is counterproductive as Wilczek's thesis is also original research even if it has been awarded a Nobel prize. Reading Wilczek's thesis is not the best way of going about learning about asymptotic freedom. The best way is to pick up a modern textbook on quantum field theory (e.g., Schwartz).
     
  7. Feb 27, 2018 #27

    PeterDonis

    Staff: Mentor

    AFAIK there is no such thing. Any theory that embeds SU(3) within a larger symmetry would amount to some kind of supersymmetric model; that's what "supersymmetry" means.
     
  8. Feb 27, 2018 #28

    Orodruin

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member
    2017 Award

    "Supersymmetry" typically refers to models with an extended space-time symmetry with anti-commuting generators, not to models that embed the SM gauge groups in a larger gauge group, which are typically unification models where all SM gauge groups are subgroups of a larger gauge group at higher energies, e.g., SO(10). The larger gauge symmetry is then broken at some high scale and the couplings of the remaining symmetries separately run down to the scales that we can observe.
     
  9. Feb 27, 2018 #29
    How about preon models (those with subquarks). Do they automatically have larger symmetry group? Can someone share one preon model that is still Su(3) only?
     
  10. Feb 27, 2018 #30

    PeterDonis

    Staff: Mentor

    Can you give a reference to such a model?
     
  11. Feb 27, 2018 #31
    (I spent an hour searching and a bit reading the following.. lol)

    https://en.wikipedia.org/wiki/Preon
    "In particle physics, preons are point particles, conceived of as subcomponents of quarks and leptons.[1] The word was coined by Jogesh Pati and Abdus Salam in 1974"

    in the references inside it are the following papers:
    http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-2310.pdf
    "It would be premature to insist, for example, that presently established ideas of gauge theories are sufficient for fully explaining the interactions of the new hypothetical building blocks. In fact, the correct dynamics at very short distances may be radically different, and is likely to involve some
    entirely new principles. However, when viewed at present energies and distances, in which quarks, leptons and ordinary gauge bosons are "point-
    like", it should somehow reproduce currently accepted theories such as ' SU(2) x U(1) and QCD"

    https://arxiv.org/pdf/hep-ph/9709227.pdf "Higgs Pain? Take a Preon!"
    "Maybe normal QCD is nothing but the ”long-range” tail of the hyper-QCD that acts between preons, reaching out from the coloured quarks, but not from the leptons."

    https://arxiv.org/ftp/hep-ph/papers/0411/0411313.pdf
    "Why quarks cannot be fundamental particles
    Many reasons why quarks should be considered composite particles are found in the book Preons by D'Souza and Kalman. One reason not found in the book is that all the quarks except for the u quark decay. The electron and the electron neutrino do not decay. A model of fundamental particles based upon the weak charge is presented."

    Arxiv has many references as well.
    https://arxiv.org/pdf/1307.6133.pdf
    "In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two fundamental spin-1 2 preons, the standard model weak gauge bosons emerge as preon bound states. In addition, the model predicts a host of new composite gauge bosons, in particular those responsible for hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard model weak interactions and a scheme for a partial and grand unification of nongravitational interactions based on respectively the effective gauge groups SU(6)P and SU(9)G."

    I can't find the book above and others to see more details. What I'd like to know is that If there are subquarks.. would the main symmetry group still be SU(3) or would SU(3) just be residual effect? And most importantly.. does the higher symmetry group occur at low energy below the electroweak scale or even below at the low quark-gluon plasma scale. Here we are making distinction to grand unified theory which has GUT energy scale. I'm asking about preon model where the energy scale is same as the SU(3) scale only.

    So bottom line. Should all preon subquark model extend the symmetry group SU(3) or do they still use this even for the interactions among the preons inside the quark?
     
  12. Feb 27, 2018 #32

    PeterDonis

    Staff: Mentor

    It would have been a better idea to read up on the relevant literature before starting this thread.

    The answer is "it depends"--it depends on the model. "Preon" does not name a specific model; it just names a general idea, that there should be "sub-particles" of which quarks and leptons are composed. A grand unified theory such as the SU(5) GUT, in which quarks and leptons are particular combinations of the underlying SU(5) particles, would meet this definition, so it's an example of a "preon" model. But there might be other "preon" models that work differently. And since none of this can be tested experimentally, it's all just speculation anyway.

    In short, the questions you are asking don't really have definite answers. That being the case, this thread is closed.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook




Loading...