MHB Question 1 AQA AS Maths Pure Core 1, May 2011

  • Thread starter Thread starter CaptainBlack
  • Start date Start date
  • Tags Tags
    Aqa Core Pure
Click For Summary
The equation of line \(AB\) is given as \(7x + 3y = 13\), with a gradient of \(-\frac{7}{3}\). A line through point \(C(-1, 3)\) parallel to \(AB\) has the equation \(y = -\frac{7}{3}x + \frac{2}{3}\). The coordinates of point \(A\) are determined to be \((4, -5)\) using the midpoint formula with point \(C\). The intersection point \(B\) of line \(AB\) and the line \(3x + 2y = 12\) is found to be \((-2, 9)\). The discussion emphasizes the importance of checking answers by substituting values back into the original equations.
CaptainBlack
Messages
801
Reaction score
0
1. The line \(AB\) has equation \(7x+3y=13\).


(a) Find the gradient of \(AB\). (2 marks)


(b) The point \(C\) has coordinates \((-1,3)\).

(i) Find an equation of the line which passes through the point \(C\) and which is parallel to \(AB\). (2 marks)(ii) The point \( (1\frac{1}{2},-1)\) is the mid point of \(AC\). Find the coordinates of the point \(A\) (2 marks)


(c) The line \(AB\) intersects the line with equation \(3x+2y=12\) at the point \(B\). Find the coordinates of \(B\) (3 marks)
 
Mathematics news on Phys.org
Re: Question 1 AQA AS Maths Pure Core 1, May 2011 Solution

Answer:
(a) We rewrite the equation of the line in the form \(y=mx+c\), then \(m\) is the gradient:
\[3y=-7x+13 \\ y=-\;\frac{7}{3}x+\frac{13}{3}\],
so the gradient is \(-\frac{7}{3}\)


(b)(i) The line through \(C: (-1,3)\) has gradient \(-\frac{7}{3}\), and so is of the form: \( y=-\;\frac{7}{3}x+c\), and as it passes through \(C\) we have:\[3=-\;\frac{7}{3}\times (-1)+c\], so \(c=3-\frac{7}{3}=\frac{2}{3}\) and the required equation of the lone through \(C\) parallel to \(AB\) is:\[y=-\;\frac{7}{3}x+\frac{2}{3}\]. Or multipling through by \(3\):\[3y=-7x+2\]


(b)(ii) As \(M: (1\frac{1}{2},-1) \) is the mid-point of \(AC\) we have the coordinates of \(M\) are the average of the coordinates of \(A\) and \(C\), so if \(A: (a_1,a_2)\) we have:\[\begin{aligned} 3/2&=(a_1+(-1))/2 \\ (-1)&=(a_2+3)/2 \end{aligned}\]. Hence \(a_1=4\) and \(a_2=-5\), so \(A\) is the point \((4,-5)\)


(c) As the line \(AB\) intersects the line \(3x+2y=12\) at \(B\) we may substitute \(y\) from the equation for \(AB\) into this to get: \[3x+2\left(-\frac{7}{3}x+\frac{13}{3}\right)=12\]or \[\left( 3-\frac{14}{3}\right)x+\frac{26}{3}=12\]simplifying some more: \[\left( -\;\frac{5}{3}\right)x=\frac{10}{3}\] so \(x=-2\), and substituting back into either equation gives \(y=9\) so \(B\) is the point \((-2,9)\).

Note I have left out the checking of answers as you go along, it takes very little time to substitute values back into equations they are supposed to satisfy to confirm that they do indeed do so, etc.
 
Last edited:
Sorry for the necroposting...

1.b.i

"Point-slope form": $$y-y_1 = m(x-x_1)$$

I recommend this when they say "find **an** equation...", as there are infinitely many such equations (and some are easier to find than others!)

So $$y - 3 = \dfrac{-7}{3} (x - (-1))$$, or
$$ y -3= \dfrac{-7}{3} (x + 1)$$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
17K
Replies
24
Views
2K
Replies
4
Views
2K
Replies
18
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K