Question about quadratic residues

  • Thread starter Thread starter T.Rex
  • Start date Start date
  • Tags Tags
    Quadratic
T.Rex
Messages
62
Reaction score
0
Hi,
I'd like to know which property proves the following simple result.

Let p be a prime greatest than 3.
r is a quadratic residue of p if there exists a such that: a^2 \equiv r \pmod{p}.
Since p is prime, there are \frac{p-1}{2} different residues (not counting 0).
Now, if you sum them all, you find: S_p=\sum_{i=1}^{\frac{p-1}{2}} r_i \equiv 0 \pmod{p}.
I cannot find any explanation in my Maths books (and remind I'm just an amateur).
If p is not prime, this property is false in general. Often, d \mid p \rightarrow d \mid S_p. And sometimes the property is true.

Examples.
p=7 S7=7
p=10 S10=2*10
p=22 S22=9*11
p=33 S33=22*11
p=35 S35=7*35
p=43 S43=10*43
p=47 S47=9*47
p=48 S48=340

The PARI/gp program I use is:
for(p=5,50,S=0;for(i=1,(p-1)/2,S=S+(i^2%p));print(p," ",S," ",S/p)
wich uses the property that a^2 \equiv (p-a)^2 \pmod{p} .

Thanks,

Tony
 
Physics news on Phys.org
There are, as you say, only (p - 1)/2 quadratic residues modulo p. 1^2, 2^2, ..., ((p - 1)/2)^2 is a list of (representatives of) (p - 1)/2 quadratic residues, and this list must therefore be complete.

Thus

\sum_{i=1}^{\frac{p-1}{2}} r_i = \sum_{i=1}^{\frac{p-1}{2}} i^2.

But the sum on right can be worked out with relative ease. In general:

\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}.

Putting n = (p - 1)/2, we get

S_p = \frac{ \frac{p-1}{2}(\frac{p-1}{2}+1)(2\frac{p-1}{2}+1)}{6} } = \frac{p(p+1)(p-1)}{24}.

Note that 24 = 3 * 2^3 and p > 3. Since p is prime, p is either congruent to 1 or 2 modulo 3. Therefore, either p - 1 or p + 1 must be divisible by 3.

Further, note that p is congruent to 1 or 3 modulo 4. Either way, we see that one of p + 1 and p - 1 must be divisible by 4, and the other will then be divisible by (at least) 2, so that (p - 1)(p + 1) is always divisible by 2 * 4 = 2^3.

So \frac{p(p+1)(p-1)}{24} is a multiple of p, and therefore congruent to 0 mod p.
 
Last edited:
Partitionning residues

Oooopps !
Thanks Muzza,
Thanks to point this. I looked into Number Theory books and forgot to open my old Maths books !

Now, I have another simple question (and still no answer on the top of my head or in my books) about partitionning the residues.

I've noticed that if \frac{p-1}{2} is even and with \frac{p-1}{4} = q, then we can partition the residues in q pairs of 2 residues (r_i,r_i') such that r_i+r_i' = p .

If \frac{p-1}{2} is odd, we cannot partition the residues into pairs.

I guess that if d is the smallest prime divisor of \frac{p-1}{2}, then we can partition the residues in q groups of d residues, such that r_{i,1}+r_{i,2} + \ldots + r_{i,d} \equiv P. The "equiv" sign here means that the q sums differ only by 1 or 2 .

I've checked this for some primes and here are some examples:
p=13 : 9+4=12+1=10+3=p
p=17 : 16+1=15+2=13+4=9+8=p
p=19 : 17+4+5=11+6+9=26 16+7+1=24
p=73 : 1+72=4+69=9+64=16+57=25+48=36+37=49+24=8+65=27+46=71+2=23+50=6+67=70+3=32+41=35+38=18+55=19+54=12+61

Do you know about an explanation ?

Thanks,

Tony


Here is the PARI/gp program I used for d=2 ((p-1)/2 is even) :

A=vector(1000); B=vector(1000)
p=73; for(i=1,(p-1)/2, A=i^2%p; B=0)
for(i=1,(p-1)/2, for(j=i+1,(p-1)/2, if(A+A[j]==p, B++; B[j]++ ; print(A," ", A[j]))))
for(i=1,(p-1)/2, if(B != 1 , print("FALSE"); break))
 
I think you can do better. If q is any prime that divides (p-1)/2, then you can partition the quadratic residues into (p-1)/(2q) sets of size q where the sum of each set is 0 mod p. For example,

p=31, the quadratic residues are 1,2,4,5,7,8,9,10,14,16,18,19,20,25,28

sets of 3:
1+5+25=2+10+19=4+20+7=8+9+14=16+18+28=0 mod 31

sets of 5:
1+2+4+8+16=5+10+20+9+18=7+14+28+25+19=0 mod 31


Note that the set of quadratic residues form a multiplicative group mod p with (p-1)/2 elements. Call this set Q

First assume q is not 2. We know the group of units has order p-1, so we have an element r of order q, since q divides p-1. Since q is prime and not 2, we also know r^2 will have order q as well so

0\equiv(r^2)^q-1\equiv ((r^2)^{q-1}+(r^2)^{q-2}+\ldots+1)(r^2-1)\text{ mod q}

since q is not 2, r^2 is not 1 mod p so we must have

0\equiv (r^2)^{q-1}+(r^2)^{q-2}+\ldots+1\text{ mod q}

So (r^2)^{q-1},\ (r^2)^{q-2},\ \ldots,\ 1 are all distinct, form a multiplicative subgroup of order q of Q and have sum 0 mod p. This subgroup is normal and partitions Q into (p-1)/(2q) equivalence classes, all of which have sum 0 mod p since they are given by multiplying this subgroup by any representative of that class.

If q is 2, then p is congruent to 1 mod 4 and -1 is a quadratic residue. Take {1,-1} as your subgroup of Q and proceed as above.
 
Crystal clear

Thanks shmoe !
It took me some minutes, but now it is crystal clear.
I'm always staggered by all one can do with the idea of "order".

Do you know about a free book or course that explains all known theory about residues ?
I have a French one describing many things about residues, but it does not talk about that.

Thanks again !
Tony
 
I can't think of any good free books, sorry.

I realized shortly afterwards that I was unnecessarily complicating things (and probably still am!). You know q divides the order of Q, so the group of quadratic residues has an element of order q, this can be our r^2. No need to even mention properties of r (though it is interesting r ends up being a quadratic residue). Also this handles the q=2 case as well, no need to separate them. This partitioning into q-sets can be extended to all residues of course.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top