Phileas.Fogg
- 32
- 0
Hello,
in our lecture, we computed \beta^{\overline{MS}} , \gamma_m^{\overline{MS}} for - \frac{\lambda}{4!} \phi^4 Theory.
These are:
<br /> <br /> \beta^{\overline{MS}} (\lambda_{\overline{MS}}) = b_1 \lambda_{\overline{MS}}^2 + O(\lambda_{\overline{MS}}^3)
<br /> \gamma_m^{\overline{MS}} (\lambda_{\overline{MS}}) = d_1 \lambda_{\overline{MS}} + O(\lambda_{\overline{MS}}^2)<br />
Is there any change, if one goes to a - \frac{\lambda}{4!} \phi^2 Theory?
I think that the Lagrangian changes to:
L = \frac{1}{2} Z (\partial_{\mu} \phi_R)^2 - \frac{1}{2} m_0^2 Z \phi_R^2 - \frac{\lambda_0}{4!} Z \phi_R^2
But that has no effect on computing the beta- and gamma-function. Am I right?
Regards,
Mr. Fogg
in our lecture, we computed \beta^{\overline{MS}} , \gamma_m^{\overline{MS}} for - \frac{\lambda}{4!} \phi^4 Theory.
These are:
<br /> <br /> \beta^{\overline{MS}} (\lambda_{\overline{MS}}) = b_1 \lambda_{\overline{MS}}^2 + O(\lambda_{\overline{MS}}^3)
<br /> \gamma_m^{\overline{MS}} (\lambda_{\overline{MS}}) = d_1 \lambda_{\overline{MS}} + O(\lambda_{\overline{MS}}^2)<br />
Is there any change, if one goes to a - \frac{\lambda}{4!} \phi^2 Theory?
I think that the Lagrangian changes to:
L = \frac{1}{2} Z (\partial_{\mu} \phi_R)^2 - \frac{1}{2} m_0^2 Z \phi_R^2 - \frac{\lambda_0}{4!} Z \phi_R^2
But that has no effect on computing the beta- and gamma-function. Am I right?
Regards,
Mr. Fogg