MHB Question about Sets and Functions

  • Thread starter Thread starter LeibnizIsBetter
  • Start date Start date
  • Tags Tags
    Functions Sets
LeibnizIsBetter
Gold Member
MHB
Messages
3
Reaction score
0
I know this is probably the most basic question imaginable so please bear with me. I did google it but I still couldn't figure it out.

Say you have a function $$f(x, y, z)$$ and a point $$(x_0, y_0, z_0)$$ that satisfies the equation $$f(x, y, z) = 0$$.

Does that imply that $$f(x_0, y_0, z_0) \in f(x, y, z)$$ ? Where $$\in$$ means "is an element of".

Or, what's the relationship between $$(x_0, y_0, z_0)$$ and $$f(x, y, z)$$ if $$(x_0, y_0, z_0)$$ is a point on the surface defined by $$f(x, y, z) = 0$$?

Thanks so much. I'm new to this and didn't drink enough coffee today.
 
Last edited:
Physics news on Phys.org
Hi LeibnizIsBetter!

LeibnizIsBetter said:
I know this is probably the most basic question imaginable so please bear with me. I did google it but I still couldn't figure it out.

Say you have a function $$f(x, y, z) = 0$$ and a point $$(x_0, y_0, z_0)$$ that satisfies the equation $$f(x, y, z) = 0$$.

Formally, f(x,y,z) is not a function. It's an output of a function for some input (x,y,z).
The function itself is simply called "f".

To write it properly, we can say:

Let f be a function $\mathbb R^3 \to \mathbb R$ and let $(x_0, y_0, z_0)$ be a point such that $f(x_0, y_0, z_0) = 0$.
Does that imply that $$f(x_0, y_0, z_0) \in f(x, y, z)$$ ? Where $$\in$$ means "is an element of".

Or is there a better way of stating what I'm trying to say?

Thanks so much. I'm new to this and didn't drink enough coffee today.

Since $f(x,y,z)$ is not a set but an output value, it does not have elements.

I think you mean to say that $f(x_0, y_0, z_0) \in \text{codomain of }f$.
We might also refer to the "range" or "image" of f instead of the "codomain".

Alternatively, we can also write that $f(x_0, y_0, z_0) \in f(\mathbb R^3)$, where the latter represents the so called "image" of f.
 
Wow! Thank you so much!
 
To underscore what ILikeSerena said, to have a function we need 3 things:

1. A set that the function $f$ acts upon (the "source set" or "set of input values", although the term "domain" is currently the most fashionable).

2. A set that the function $f$ maps to (the "target" set or "set where output values live").
Typically, this is called the "co-domain", and it gets confused with "range".

Let me give an example, to underscore the subtle difference:

A commonly encountered function is the "squaring function" usually written:

$f: \Bbb R \to \Bbb R, f(x) = x^2$.

When we say the co-domain is the real numbers, all we are saying is that for any real number $x$, $f(x) = x^2$ is also a real number. The range is often a PROPER subset of the co-domain (in this case, it is the set of all non-negative real numbers).

Technically, the function:

$f: \Bbb R \to \Bbb R_0^{+}, f(x) = x^2$ is a different function, because the graph of one includes the plane below the x-axis, while in the other there's nothing there. In practice, the difference between:

$f:A \to B$

and

$f: A \to f(A)$

often is irrelevant, but I wish to point out that the SECOND function is ONTO, whereas the first one may not be. Sometimes, this is important (like when you are finding inverse functions).

Finally you need:

3. A "rule of assignment" that tells you WHICH element of $B$ (the co-domain) $f(a)$ is, for each and every element $a \in A$. This assignment may be via a formula, such as:

$f(x) = x^2$

or it may be explicitly defined, such as:

$f:\{1,2,3\} \to \{1,2,3\}$

$f(1) = 1, f(2) = 3, f(3) = 2$

(indeed, functions can be finite).

FORMALLY, the definition of function is this:

$f \subseteq AxB: \forall (a_1,b_1),(a_2,b_2) \in f, a_1 = a_2 \implies b_1 = b_2$

that is, a function can only have one value $f(a)$ for every $a \in A$.

So, for example, "circles in the plane" are not functions, because for every point $x \in (-r,r)$ there are TWO values of $y$ such that:

$x^2 + y^2 = r^2$, namely:

$y = \sqrt{r^2 - x^2}$
$y = -\sqrt{r^2 - x^2}$

whereas the semi-circle obtained by consistently choosing either the positive, or the negative square root *is* a function.

*******

It is often typical in many textbooks to find the author confusing a function with its value.

You may read something like:

"Consider the function "$p(x) = x^2 + ax + b$".

This OUGHT to be:

"Consider the function $p$ defined by $p(x) = x^2 + ax + b$".

However, in speaking of functions, we often have to give them a "name", and while a "technically correct" name for $p$ might be:

"$[\ \ ]^2 + a[\ \ ] + b$"

such an arrangement gets to be cumbersome.
 
Last edited:
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...

Similar threads

Back
Top