jdstokes
- 520
- 1
In relativistic quantum field theory the Dirac spinors can be chosen to be eigenstates of the helicity operator \vec{\Sigma}\cdot \vec{p} /|\vec{p}|.
I want to show that \vec{\Sigma}\cdot \vec{a} commutes with the Dirac Hamiltonian only if \vec{a}\propto \vec{p}. As usual I'm using Einstein summation everywhere.
[\vec{\Sigma}\cdot \vec{a}, H_\mathrm{Dirac}]\psi=[\vec{\Sigma}\cdot \vec{a}, -i\hbar c \gamma^i\partial_i + mc^2]\psi =-i\hbar c[\Sigma^ia_i, \gamma^i \partial_i]\psi
[\Sigma^i a_i, \gamma^l \partial_l]\psi=[\frac{i}{2}\epsilon^{ijk}\gamma_j\gamma_k a_i, \gamma^l \partial_l]\psi= \frac{i}{2}\epsilon_{ijk}[\gamma^j\gamma^k a^i, \gamma^l \partial_l]\psi = \frac{i}{2}\epsilon_{ijk}(\gamma^j\gamma^k a^i \gamma^l \partial_l-\gamma^l \partial_l\gamma^j\gamma^k a^i ]\psi
since \epsilon^{ijk} = \epsilon_{ijk}(-1)^3 and \gamma_i = -\gamma^i,\, a_i = -a^i in flat spacetime with (+,-,-,-) signature.
Now suppose a^i = \partial^i. Then using equality of mixed partials and dividing out any constants gives
\epsilon_{ijk}(\gamma^j\gamma^k\gamma^l \partial_l\partial^i\psi - \gamma^l\gamma^j\gamma^k \partial_l\partial^i \psi)
Using the relation \{ \gamma^\mu,\gamma^\nu \} = 2\eta^{\mu\nu} twice and the fact that \eta^{ij}\partial_i = \partial^j in flat spacetime gives
\epsilon_{ijk}(\gamma^k \partial^j - \gamma^j\partial^k)\partial^i \psi
Now, in the sum over k,j the term in brackets is anti-symmetric but so is \epsilon_{ijk} so I don't see why this should vanish.
Any help would be appreciated.
I want to show that \vec{\Sigma}\cdot \vec{a} commutes with the Dirac Hamiltonian only if \vec{a}\propto \vec{p}. As usual I'm using Einstein summation everywhere.
[\vec{\Sigma}\cdot \vec{a}, H_\mathrm{Dirac}]\psi=[\vec{\Sigma}\cdot \vec{a}, -i\hbar c \gamma^i\partial_i + mc^2]\psi =-i\hbar c[\Sigma^ia_i, \gamma^i \partial_i]\psi
[\Sigma^i a_i, \gamma^l \partial_l]\psi=[\frac{i}{2}\epsilon^{ijk}\gamma_j\gamma_k a_i, \gamma^l \partial_l]\psi= \frac{i}{2}\epsilon_{ijk}[\gamma^j\gamma^k a^i, \gamma^l \partial_l]\psi = \frac{i}{2}\epsilon_{ijk}(\gamma^j\gamma^k a^i \gamma^l \partial_l-\gamma^l \partial_l\gamma^j\gamma^k a^i ]\psi
since \epsilon^{ijk} = \epsilon_{ijk}(-1)^3 and \gamma_i = -\gamma^i,\, a_i = -a^i in flat spacetime with (+,-,-,-) signature.
Now suppose a^i = \partial^i. Then using equality of mixed partials and dividing out any constants gives
\epsilon_{ijk}(\gamma^j\gamma^k\gamma^l \partial_l\partial^i\psi - \gamma^l\gamma^j\gamma^k \partial_l\partial^i \psi)
Using the relation \{ \gamma^\mu,\gamma^\nu \} = 2\eta^{\mu\nu} twice and the fact that \eta^{ij}\partial_i = \partial^j in flat spacetime gives
\epsilon_{ijk}(\gamma^k \partial^j - \gamma^j\partial^k)\partial^i \psi
Now, in the sum over k,j the term in brackets is anti-symmetric but so is \epsilon_{ijk} so I don't see why this should vanish.
Any help would be appreciated.
Last edited: