Question about thermodynamic quantities

AI Thread Summary
In constant pressure thermodynamic processes, dH equals dqp, raising questions about the necessity of reversible work, where dw may equal zero if dv is zero. The discussion also explores whether qv must be reversible heat transfer, particularly in the context of irreversible heat transfer. Additionally, the relationship dU equals dqv is examined for its dependence on reversibility. The impact of ideal versus non-ideal gases on these thermodynamic relations is highlighted, especially in scenarios like Joule's free expansion. Clarification is sought on how these factors influence thermodynamic behavior, particularly regarding the nature of reversible processes.
kelvin490
Gold Member
Messages
227
Reaction score
3
We know that for constant pressure thermodynamic processes, dH=dqp. My question is, does it implies that only reversible work is possible in this processes so that dw=0 because dv is zero? In addition, does qv necessarily be reversible heat transfer in this case? What if the heat transfer is irreversible?

Similar question for dU=dqv, does the process need to be reversible?

Another question is, do the above relations have anything to do with whether or not the system is an ideal gas? I have heard from a lecture that du≠dqv in Joule's free expansion for non-ideal gas. Consider reversibility and whether it's ideal gas there are four combinations of situations (ideal gas reversible,ideal gas irreversible, non-ideal gas reversible, non-ideal gas irreversible). I get confused with how these factors affect the thermodynamic relations.
 
Last edited:
Science news on Phys.org
Is it true that reversible process can only occur in the form of infinitesimal expansion/compression?
 
I need to calculate the amount of water condensed from a DX cooling coil per hour given the size of the expansion coil (the total condensing surface area), the incoming air temperature, the amount of air flow from the fan, the BTU capacity of the compressor and the incoming air humidity. There are lots of condenser calculators around but they all need the air flow and incoming and outgoing humidity and then give a total volume of condensed water but I need more than that. The size of the...
I was watching a Khan Academy video on entropy called: Reconciling thermodynamic and state definitions of entropy. So in the video it says: Let's say I have a container. And in that container, I have gas particles and they're bouncing around like gas particles tend to do, creating some pressure on the container of a certain volume. And let's say I have n particles. Now, each of these particles could be in x different states. Now, if each of them can be in x different states, how many total...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...
Back
Top