I didn't think you did, but I appreciate the confirmation.
I may be repeating things that have already been said in this thread, but just to summarize briefly:
(1) If a particle can travel faster than light, then there will be some inertial frames in which the time of emission of the particle will be *later* than the time of reception, rather than earlier. This can be interpreted as the particle "traveling backwards in time". But this will always be frame-dependent; there will always be other frames in which the time of emission is earlier than the time of reception.
(2) If the particle's FTL speed is determined relative to the emitter--i.e., if the particle's speed is always the same v > c in the emitter's rest frame--and if the FTL particles can be used to send information signals, then it is possible to have a closed loop of information signals: that is, a piece of information can arrive at the sender before it is sent (if the receiver/emitter that reflects back the FTL signal is moving fast enough relative to the original sender who receives the return signal). This is widely considered to be physically unreasonable, but it is possible to construct logically consistent scenarios where this happens (at the cost of constraining the "free will" of persons in the scenario).
(3) If the particle's FTL speed is determined relative to some fixed inertial frame--i.e., if the particle's speed is always the same v > c relative to, say, the rest frame of the Sun, regardless of how the emitter is moving relative to the Sun--then it is not possible to have closed information loops as in #2. However, such a law for determining the particle's FTL speed involves a "preferred frame"--one particular inertial frame is "special" compared to all the others--and this is also widely considered to be physically unreasonable. But again, it is possible to construct logically consistent scenarios where this happens; though in these scenarios, things will still look highly counterintuitive in some inertial frames (since, by #1 above, there will always be *some* frames in which the FTL particles appear to go backwards in time, even if closed information loops are not present).
The upshot is that, because FTL particles imply either #2 or #3, and both #2 and #3 are widely considered to be physically unreasonable, FTL particles are widely considered to be physically unreasonable. But "physically unreasonable" is not the same as "logically impossible".