murshid_islam
- 468
- 21
i have to prove that the sequence {ak} is decreasing, where
\{a_k\} = \{\left({1+\frac{1}{k}}\right)^{-k}\}
this is what i did:
a_k = {\left(\frac{k}{k+1}}\right)^k
a_{k+1}-a_{k}
= {\left(\frac{k+1}{k+2}}\right)^{k+1}-{\left(\frac{k}{k+1}}\right)}^{k}
= {\left(\frac{1+\frac{1}{k}}{1+\frac{2}{k}}}\right)^{k+1}-{\left(\frac{k}{k+1}}\right)^{k}
< {\left(\frac{1+\frac{1}{k}}{1+\frac{1}{k}}}\right)^{k+1}-{\left(\frac{k}{k+1}}\right)^{k}
= 1 - \left({\frac{k}{k+1}}\right)^{k}
< 1-1 since \left({\frac{k}{k+1}}\right)^{k} < 1
therefore, a_{k+1}-a_{k} < 0
therefore, the sequence is decreasing.
am i right?
\{a_k\} = \{\left({1+\frac{1}{k}}\right)^{-k}\}
this is what i did:
a_k = {\left(\frac{k}{k+1}}\right)^k
a_{k+1}-a_{k}
= {\left(\frac{k+1}{k+2}}\right)^{k+1}-{\left(\frac{k}{k+1}}\right)}^{k}
= {\left(\frac{1+\frac{1}{k}}{1+\frac{2}{k}}}\right)^{k+1}-{\left(\frac{k}{k+1}}\right)^{k}
< {\left(\frac{1+\frac{1}{k}}{1+\frac{1}{k}}}\right)^{k+1}-{\left(\frac{k}{k+1}}\right)^{k}
= 1 - \left({\frac{k}{k+1}}\right)^{k}
< 1-1 since \left({\frac{k}{k+1}}\right)^{k} < 1
therefore, a_{k+1}-a_{k} < 0
therefore, the sequence is decreasing.
am i right?
Last edited: