Question on a proof by induction

  • Thread starter Thread starter mnb96
  • Start date Start date
  • Tags Tags
    Induction Proof
mnb96
Messages
711
Reaction score
5
Hello,
I have a subgroup S=\left\langle A \right\rangle generated by the set A, i.e. S=\left\{ a_1 a_2 \ldots a_n \;|\; a_i \in A \right\}.

When I need to prove by induction on n some property of S, what should I choose as the base case of induction? n=1, or simply n=0 ?

If the answer is n=0, then it seems to me that in most cases associated with "subgroups generated by some set", we always have to define n=0 as corresponding to the identity element, thus the basis of induction will be always about proving that some property holds for the identity element. Am I right?
 
Physics news on Phys.org
Well, I would say that this depends upon how the statement to be proved is formulated. If it says that it should hold for all n>=0, then your interpretation is correct in my opinion. If it should hold only for all n>=1, the problem does not occur.
 
mnb96 said:
Hello,
I have a subgroup S=\left\langle A \right\rangle generated by the set A, i.e. S=\left\{ a_1 a_2 \ldots a_n \;|\; a_i \in A \right\}.

When I need to prove by induction on n some property of S, what should I choose as the base case of induction? n=1, or simply n=0 ?

If the answer is n=0, then it seems to me that in most cases associated with "subgroups generated by some set", we always have to define n=0 as corresponding to the identity element, thus the basis of induction will be always about proving that some property holds for the identity element. Am I right?

Proofs such as you've described typically involve induction on the length of the expression. For example if a group is Abelian, meaning ab = ba, you can use induction to show that you can freely permute the factors of a product of n elements.

Without more info it's difficult to answer your question. In the most general case you can start an induction anywhere.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top