TheCanadian said:
Thank you for the response. I think this is fairly basic, but how exactly did you evaluate
$$ \frac{e^{-\mathrm{i} \tau (k-k_0-\mathrm{i} 0^+)}}{-\mathrm{i}(k-k_0 - \mathrm{i} 0^+)} $$
in the limit ## \tau \rightarrow \infty ##?
And I think this is just stemming from my lack of understanding, but how exactly are the two expressions: ##\frac{1}{\mathrm{i}(k-k_0+\mathrm{i} 0^+)}## and ## -\pi \delta(k-k_0) - \mathrm{i} \text{PP} \frac{1}{k-k_0} ## equivalent?
Concerning the 1st question: That's the point of introducing the ##-\mathrm{i} 0^+##. No matter how small you take it, it makes the exponential vanish in the limit ##\tau \rightarrow \infty##. That's how you get the final result as the integral only taken at the lower limit ##\tau=0##.
Concerning the 2nd question: Take an analytic test function ##\phi(k)## vanishing quickly enough for (complex!) ##k## anywere. Now we want to evaluate the integral
$$\Phi_{\epsilon}(k_0)=\int_{-\infty}^{\infty} \mathrm{d} k \frac{f(k)}{k-k_0+\mathrm{i} \epsilon}.$$
Now we have
$$\frac{1}{k-k_0+\mathrm{i} \epsilon}=\frac{k-k_0-\mathrm{i} \epsilon}{(k-k_0)^2+\epsilon^2}.$$
Thus we can write the integral as
$$\Phi_{\epsilon}(k_0)=\int_{-\infty}^{\infty} \mathrm{d} k \left [\frac{f(k)}{k-k_0} \; \frac{(k-k_0)^2}{(k-k_0)^2+\epsilon^2}-\frac{\mathrm{i} \epsilon}{(k-k_0)^2+\epsilon^2} f(k) \right].$$
For the first term the contributions from ##|k-k_0| \gg \epsilon## the 2nd factor is ##\approx 1## while for ##|k-k_0|^2 \ll \epsilon## the contribution is negligible. For ##\epsilon \rightarrow 0^+## you get thus from this term the principle value, because the 2nd factor is symmetric around ##k=k_0##.
In the 2nd term the factor in the integrand is an approximate ##\delta## function, since
$$\int_{-\infty}^{\infty} \mathrm{d} k \frac{\epsilon}{(k-k_0)^2+\epsilon^2}=\arctan \left (\frac{k-k_0}{\epsilon} \right)_{-\infty}^{\infty}=\pi,$$
and for ##\epsilon \rightarrow 0^+## this factor goes to 0 for ##k-k_0 \neq 0## and to ##\infty## for ##k-k_0=0##. So finally we have
$$\lim_{\epsilon \rightarrow 0^+} \int_{-\infty}^{\infty} \mathrm{d} k \frac{f(k)}{k-k_0+\mathrm{i} \epsilon} = \text{PP} \int_{-\infty}^{\infty} \mathrm{d} k \frac{f(k)}{k-k_0} -\mathrm{i} \pi f(k_0),$$
and this we wanted to show.