Question on hoop stress tension in rotating objects

Click For Summary
SUMMARY

This discussion centers on the concept of hoop stress in rotating objects, particularly solid flywheels and rings. Participants clarify that hoop stress arises from internal forces resisting deformation caused by radial centrifugal forces. It is established that if a greater inward force opposes the radial forces, hoop tension transforms into net tangential compression. The conversation also references the Machinery Handbook to emphasize that while the resultant centrifugal forces may equal zero at the axis, individual elements still experience radial forces contributing to hoop stress.

PREREQUISITES
  • Understanding of hoop stress and its relation to centrifugal forces
  • Familiarity with the principles of rotational dynamics
  • Knowledge of stress analysis in materials
  • Basic concepts of free body diagrams in mechanics
NEXT STEPS
  • Study the equations for hoop stress in rotating bodies from "Advanced Strength of Materials" by J.P. Den Hartog
  • Learn about the effects of radial forces on solid and hollow rotating discs
  • Investigate the relationship between centrifugal force and internal stresses in rotating systems
  • Explore free body diagram techniques for analyzing forces in rotating objects
USEFUL FOR

Mechanical engineers, materials scientists, and students studying rotational dynamics and stress analysis in engineering applications.

  • #31
LT Judd said:
Good Day Chester,
I thought I would have a crack at the FBD. see attached- does that look right?
Being a ring rather than a disk I assumed that there is no inward radial force, not sure if that's correct.
So based on the FBD and the arising formula, it appears that the hoop forces could be huge.
Note this is based on a general thin ring, not for the "earth case", in that case you would also include gravity, as an inward force, I guess.
so given that there is a sineis also very small, it, i i small, View attachment 297052
I guess the only mistake here is that there should have been a 2##d\theta## in the numerator instead of just ##d\theta##
 
Last edited:
  • Like
Likes   Reactions: hutchphd
Engineering news on Phys.org
  • #32
Sorry , totally lost me there.
Is the units of T Newtons ( or kN) ?
and does ## i_r ## means the unit tension vector in the radial direction?
I also don't understand the notation ##i_\theta (\theta)##.
Why is ## \(theta) ## written twice and which one refers to the direction and what does the other refer to?
 
  • #33
LT Judd said:
Sorry , totally lost me there.
Is the units of T Newtons ( or kN) ?
and does ## i_r ## means the unit tension vector in the radial direction?
I also don't understand the notation ##i_\theta (\theta)##.
Why is ## \(theta) ## written twice and which one refers to the direction and what does the other refer to?
##i_r## is the unit vector (radial direction) in cylindrical polar coordinates and ##i_{\theta}## is the unit vector (angular direction ##\theta##). Geometrically, both these unit vectors depend on the polar angle ##\theta##: $$\frac{di_r}{d\theta}=i_{\theta}$$ and $$\frac{di_{\theta}}{d\theta}=-i_r$$

Are you not familiar with polar coordinates and use of unit vectors which change in spatial position?
 
  • #34
paulsterx said:
Yes agreed, his diatribe is that because hoop stress is a tangential force and gravity is a radial force, there’s no way that gravity could oppose hoop stress. My point is that for (tensional) hoop stress to exist, there must be a net force acting away from the axis of rotation and that due to gravity, the net force is towards the axis, therefore there is no tension stress, rather compression.
You don't need to calculate the tangential force to see that it is compressive: if it were not then the oceans would part.

There is no point arguing with a flat Earther with facts as they have already opted to ignore certain facts that do not support their delusion.
 
  • #35
Chestermiller said:
##i_r## is the unit vector (radial direction) in cylindrical polar coordinates and ##i_{\theta}## is the unit vector (angular direction ##\theta##). Geometrically, both these unit vectors depend on the polar angle ##\theta##: $$\frac{di_r}{d\theta}=i_{\theta}$$ and $$\frac{di_{\theta}}{d\theta}=-i_r$$

Are you not familiar with polar coordinates and use of unit vectors which change in spatial position?
Hi Chester,
Sorry for the late reply, I wanted to have a long think about it. Yes I am familiar with polar co-ordinates and unit vectors , but I dare say not as much as you are. I just struggled with some of your notations and sign conventions.

Anyhow , I decided to look at this another way however and realized that I should have accounted for gravity in my FBD as it turn out that has a far greater effect that an any centripetal force or hoop stress.

You can deduce a formula for centripetal acceleration on a spinning sphere with some elementary physics: a=V^2/R, where V = linear speed at equator and R is the radius
For earth, V is 465 m/s ( circumeference of Earth divided by length of day), and the radius of the Earth is 6.4 million metres.
This gives a centripetal acceleration of 0.03 m/s^2 . Considering gravity at 9.8 m/s^2 is about 300 times greater and in the opposite direction, there is obviously no risk of anything flying outward and I think I can also conclude that there are no net hoop stresses on the Earth's crust. Rather the Earth's crust (and oceans) would be overall in compression.

As the previous poster noted , simple observation can tell you that , but it's been a good mental exercise to look into the physics behind it .
 
  • #36
LT Judd said:
Hi Chester,
Sorry for the late reply, I wanted to have a long think about it. Yes I am familiar with polar co-ordinates and unit vectors , but I dare say not as much as you are. I just struggled with some of your notations and sign conventions.

Anyhow , I decided to look at this another way however and realized that I should have accounted for gravity in my FBD as it turn out that has a far greater effect that an any centripetal force or hoop stress.
You are aware that you can cause a ring to rotate about its axis as fast as you want, and this can create centripetal accelerations far exceeding g, with associated huge hoop tensions, right?
 

Similar threads

Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
9
Views
2K
Replies
13
Views
3K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K