Question on Time Reversal and Degeneracy

RedX
Messages
963
Reaction score
3
Under time reversal T, the momentum operator changes sign but the position operator remains the same. So if you have a Hamiltonian of the form H(X,P)=P^2 + V(X) , then it's invariant under time reversal since momentum is squared. This means H and T commute, so that if a state has eigenvalue E of the operator H, then T operated on the state also has the same eigenvalue E under the operator H. However, since T^2=-1 and not +1, this implies that T operated on the state is not the same state. In other words, whenever the Hamiltonian is of the form P^2+V(X), every state is twice degenerate?

For the electrons, this kind of makes sense because spin isn't specified by the Hamiltonian of the form P^2+V(X), and spin can offer a degeneracy of two in this case. But what about for spinless particles?

Also is it sloppy to say that if the Hamiltonian doesn't depend on time, then it is invariant under time reversal? What if the Hamilotnian were H=P^2+P? Here the Hamiltonian seems to me to not depend on time, but the way time flows?
 
Physics news on Phys.org
Never mind. Wikipedia explains it:

http://en.wikipedia.org/wiki/T-symmetry#Kramers.27_theorem

So it turns out that T^2 can be +1 or -1, the latter for spin 1/2, the former for spin 0. So there is no degeneracy if T^2=1.

Still, it's a little weird. If you charge conjugate twice, you should get the same state. If you do parity twice, you may or may not get the same state depending on your phase convention? And if you do time reversal twice, you definitely don't get the same state (for a spin 1/2 particle).

I suppose this is not too weird since you have to rotate an electron around two circles to get it back the same. But one would normally expect that if you reversed time twice, nothing would happen, and you'd be back where you were. Same with parity.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top