Question re: time dilation equations

mathyou9
Messages
8
Reaction score
0
For both time dilation equations (kinematic and gravitational) I have often seen

\Delta t^\prime = \frac{\Delta t}{\sqrt{1-(v/c)^2}}

and

\Delta t' = \frac{\Delta t}{\sqrt{1-\frac{2GM}{rc^2}}}

I'll calls these equations as "Set A"

------------------------

And at other times as

\Delta t = \frac{\Delta t_0}{\sqrt{1-(v/c)^2}}

and

\Delta t = \frac{\Delta t_0}{\sqrt{1-\frac{2GM}{rc^2}}}

I'll calls these equations as "Set B"

---

I'm no physics (or mathematics) major (just a dilettante; that's why I'm asking.) Why use t' (on the left side of the equals sign for "Set A" equations) but t0 (on the right side of the equals sign for "Set B" equations)? I realize an equation is only good as far as you can interpret it. And so I know these are the same equations, but why the difference?

Thanks. :)
 
Physics news on Phys.org
It would be nice if all physicists agreed on the symbols used to represent physical quantities in equations. Unfortunately they don't. In case of apparent conflict, you need to read the text surrounding the equations carefully, to find out how each author defines his symbols.
 
jtbell said:
It would be nice if all physicists agreed on the symbols used to represent physical quantities in equations. Unfortunately they don't. In case of apparent conflict, you need to read the text surrounding the equations carefully, to find out how each author defines his symbols.
Of course. Universality of equation symbology would be nice, but that'll never happen. :-)

---

Completely tangential to my OP: I can easily plug numbers into the kinematic time dilation equation without even thinking about it. But I've never really involved myself with the gravitation time dilation equation until recently. I'm still trying to get a firm grasp on it. With that said, can anyone provide me an example of the numbers to use in the gravitational time dilation equation regarding someone on the surface of the Earth as viewed by an observer very far away from earth?

Thanks, your response(s) are much appreciated.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...

Similar threads

Replies
2
Views
2K
Replies
31
Views
2K
Replies
54
Views
3K
Replies
14
Views
1K
Replies
13
Views
1K
Replies
6
Views
1K
Replies
14
Views
887
Back
Top