Question regarding dh, du, cp, cv for ideal gases

Click For Summary
SUMMARY

The discussion centers on the thermodynamic properties of ideal gases, specifically the relationships between enthalpy (Δh), internal energy (Δu), and specific heats (Cp and Cv). It is established that Δh = Cp dT and Δu = Cv dT are valid for ideal gases regardless of whether the process is isobaric or isochoric. The confusion arises from the assumption that heat exchange (q) equals Δh in non-isobaric processes, which is incorrect. The correct interpretation is that Δh = q only under constant pressure conditions.

PREREQUISITES
  • Understanding of the First Law of Thermodynamics
  • Familiarity with thermodynamic properties of ideal gases
  • Knowledge of specific heats at constant pressure (Cp) and constant volume (Cv)
  • Basic principles of isobaric and isochoric processes
NEXT STEPS
  • Study the derivation of the First Law of Thermodynamics in relation to ideal gases
  • Learn about the implications of isobaric and isochoric processes on thermodynamic calculations
  • Explore the relationship between specific heats (Cp and Cv) and their dependence on temperature
  • Investigate the role of enthalpy in non-isobaric processes and its calculation
USEFUL FOR

Students and professionals in thermodynamics, mechanical engineers, and anyone involved in the study or application of ideal gas laws and thermodynamic processes.

Uchida
Messages
22
Reaction score
6
Hi,

Considering the question bellow from a government work selection process:Check the FALSE alternative on the use of thermodynamic properties.
  1. In a cylinder-piston type system, the variation of the enthalpy property (Δh) is usually applied to determine the heat (per kilogram) exchanged with the neighborhood (q = Δh), but only for processes under constant pressure.
  2. The product of specific heat at constant volume (Cv), by varying the temperature of a system (ΔT), is used to determine the variation of specific internal energy (Δu = Cv ΔT), but only when the volume is kept constant (isovolumetric process ) and when there is no phase change.
  3. For the ideal gas model, it is usual for the specific heat property at constant pressure Cp to be considered independent of the fluid pressure.
  4. For the ideal gas model model, the specific heat property at constant volume Cv is considered to be independent of the fluid pressure.
I consider both options 1 and 2 to be false, because, for ideal gases, cv and cp are only dependent of T, therefore, given that

dh = cp.dT
du = cv.dT

dh and du expressed as above are true whether or not the process is isobaric / isochoric.

Also, continuing with 1º Law of Thermodynamics:

𝛿q = du + 𝛿w = cp.dT = cv.dT + p.dv = dh

For a process with frontier work, p.dv is not necessarily isobaric. Nervertheless, dh = 𝛿q would still be valid, correct?

Therefore, in my view, both the statements of alternatives '1' and '2' are false.

However, in the answer to the question, only '2' is considered to be false.Where's my mistake?

Thank you.
 
Science news on Phys.org
Your mistake is assuming that, for a non-isobaric process, ##q=\Delta h##. ##\Delta h=C_p\Delta p## for an ideal gas undergoing an arbitrary process, but not q.
 
  • Like
Likes   Reactions: Uchida
In the canonical ensemble (particle number strictly fixed) you have two independent thermodynamical quantities, and the potentials for the various processes are all derived from
$$\mathrm{d} U = T \mathrm{d} S - p \mathrm{d} V.$$
That means that U is the right potential for isochoric processes (processes at constant volume), i.e., for ##\mathrm{d} V=0## you have ##\mathrm{d} U=T \mathrm{d} S=\mathrm{d} Q##. So in this case you get the specific heat at constant volume,
$$C_V=\left (\frac{\partial U}{\partial T} \right)_V.$$
Since for an ideal gas
$$U=\frac{f}{2} N k T,$$
with ##f=3## for monatomic, ##f=5## for two-atomic and ##f=6## for ##n##-atomic (##n \geq 3##) gases, you find
$$C_V=\frac{f}{2} N k T.$$
From this you can also derive the entropy as a function of ##V## and ##T## relative to a state ##V_0## and ##T_0##, because you have
$$C_V=T \left (\frac{\partial S}{\partial T} \right)_V=\text{const} ; \Rightarrow \; S-S_0=C_V \ln \left (\frac{T}{T_0} \right) + \tilde{S}(V).$$
Further for an isothermal process you have (using also the equation of state ##p V=N k T##)
$$\mathrm{d} U=0=T \mathrm{d} S-p \mathrm{d} V \; \Rightarrow \; \left (\frac{\partial S}{\partial V} \right)_T = \frac{p}{T} = \frac{N k}{V} \; \Rightarrow \; \tilde{S}=N k \ln \left (\frac{V}{V_0} \right).$$
Thus we have
$$S=S_0 + C_V \ln \left (\frac{T}{T_0} \right) + N k \ln \left (\frac{V}{V_0} \right).$$
For isobaric changes (i.e., changes at constant pressure) you need the enthalpy
$$H=U+p V \; \Rightarrow \; \mathrm{d} H=T \mathrm{d} S+ V \mathrm{d} p.$$
From this you get for ##\mathrm{d} p=0##
$$\mathrm{d} H=\mathrm{d} Q = T \left (\frac{\partial S}{\partial T} \right)_p.$$
With the equation of state we get from the above expression for ##S##
$$S=S_0 + C_V \ln \left (\frac{T}{T_0} \right) + N k \ln \left (\frac{T p_0}{T_0 p} \right) = S_0 + (C_V+N k) \ln \left (\frac{T}{T_0} \right) - N k \ln \left (\frac{p}{p_0} \right).$$
From this you find
$$C_P= T \left (\frac{\partial S}{ \partial T} \right)_P=C_V+N k= \left ( \frac{f}{2}+1 \right) N k.$$
 
  • Like
Likes   Reactions: Uchida
Thanks for your answers.

I see the mistake I´ 've made.

Starting from H = U + PV:

h = u + pv

Then

dh = du + p.dv + v.dp = 𝛿q + v.dp

so, dh = 𝛿q only if the process is isobaric, where dp = 0 from the v.dp term.
 
  • Like
Likes   Reactions: Chestermiller and vanhees71

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
16
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
9K
Replies
8
Views
2K
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
9
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K