I Question regarding dh, du, cp, cv for ideal gases

AI Thread Summary
The discussion centers on the thermodynamic properties of ideal gases, specifically the relationship between enthalpy (Δh), internal energy (Δu), and specific heats (Cp and Cv). It clarifies that Δh = CpΔT and Δu = CvΔT are valid for ideal gases but emphasizes that Δh = δq only holds true during isobaric processes, as changes in pressure affect enthalpy. The initial assumption that both statements regarding Cv and Cp being independent of pressure were false is corrected, highlighting that only the second statement is inaccurate. The conversation concludes with an acknowledgment of the mistake regarding the conditions under which enthalpy and heat exchange are equated. Understanding these thermodynamic principles is crucial for accurately analyzing gas behavior in various processes.
Uchida
Messages
22
Reaction score
6
Hi,

Considering the question bellow from a government work selection process:Check the FALSE alternative on the use of thermodynamic properties.
  1. In a cylinder-piston type system, the variation of the enthalpy property (Δh) is usually applied to determine the heat (per kilogram) exchanged with the neighborhood (q = Δh), but only for processes under constant pressure.
  2. The product of specific heat at constant volume (Cv), by varying the temperature of a system (ΔT), is used to determine the variation of specific internal energy (Δu = Cv ΔT), but only when the volume is kept constant (isovolumetric process ) and when there is no phase change.
  3. For the ideal gas model, it is usual for the specific heat property at constant pressure Cp to be considered independent of the fluid pressure.
  4. For the ideal gas model model, the specific heat property at constant volume Cv is considered to be independent of the fluid pressure.
I consider both options 1 and 2 to be false, because, for ideal gases, cv and cp are only dependent of T, therefore, given that

dh = cp.dT
du = cv.dT

dh and du expressed as above are true whether or not the process is isobaric / isochoric.

Also, continuing with 1º Law of Thermodynamics:

𝛿q = du + 𝛿w = cp.dT = cv.dT + p.dv = dh

For a process with frontier work, p.dv is not necessarily isobaric. Nervertheless, dh = 𝛿q would still be valid, correct?

Therefore, in my view, both the statements of alternatives '1' and '2' are false.

However, in the answer to the question, only '2' is considered to be false.Where's my mistake?

Thank you.
 
Physics news on Phys.org
Your mistake is assuming that, for a non-isobaric process, ##q=\Delta h##. ##\Delta h=C_p\Delta p## for an ideal gas undergoing an arbitrary process, but not q.
 
In the canonical ensemble (particle number strictly fixed) you have two independent thermodynamical quantities, and the potentials for the various processes are all derived from
$$\mathrm{d} U = T \mathrm{d} S - p \mathrm{d} V.$$
That means that U is the right potential for isochoric processes (processes at constant volume), i.e., for ##\mathrm{d} V=0## you have ##\mathrm{d} U=T \mathrm{d} S=\mathrm{d} Q##. So in this case you get the specific heat at constant volume,
$$C_V=\left (\frac{\partial U}{\partial T} \right)_V.$$
Since for an ideal gas
$$U=\frac{f}{2} N k T,$$
with ##f=3## for monatomic, ##f=5## for two-atomic and ##f=6## for ##n##-atomic (##n \geq 3##) gases, you find
$$C_V=\frac{f}{2} N k T.$$
From this you can also derive the entropy as a function of ##V## and ##T## relative to a state ##V_0## and ##T_0##, because you have
$$C_V=T \left (\frac{\partial S}{\partial T} \right)_V=\text{const} ; \Rightarrow \; S-S_0=C_V \ln \left (\frac{T}{T_0} \right) + \tilde{S}(V).$$
Further for an isothermal process you have (using also the equation of state ##p V=N k T##)
$$\mathrm{d} U=0=T \mathrm{d} S-p \mathrm{d} V \; \Rightarrow \; \left (\frac{\partial S}{\partial V} \right)_T = \frac{p}{T} = \frac{N k}{V} \; \Rightarrow \; \tilde{S}=N k \ln \left (\frac{V}{V_0} \right).$$
Thus we have
$$S=S_0 + C_V \ln \left (\frac{T}{T_0} \right) + N k \ln \left (\frac{V}{V_0} \right).$$
For isobaric changes (i.e., changes at constant pressure) you need the enthalpy
$$H=U+p V \; \Rightarrow \; \mathrm{d} H=T \mathrm{d} S+ V \mathrm{d} p.$$
From this you get for ##\mathrm{d} p=0##
$$\mathrm{d} H=\mathrm{d} Q = T \left (\frac{\partial S}{\partial T} \right)_p.$$
With the equation of state we get from the above expression for ##S##
$$S=S_0 + C_V \ln \left (\frac{T}{T_0} \right) + N k \ln \left (\frac{T p_0}{T_0 p} \right) = S_0 + (C_V+N k) \ln \left (\frac{T}{T_0} \right) - N k \ln \left (\frac{p}{p_0} \right).$$
From this you find
$$C_P= T \left (\frac{\partial S}{ \partial T} \right)_P=C_V+N k= \left ( \frac{f}{2}+1 \right) N k.$$
 
Thanks for your answers.

I see the mistake I´ 've made.

Starting from H = U + PV:

h = u + pv

Then

dh = du + p.dv + v.dp = 𝛿q + v.dp

so, dh = 𝛿q only if the process is isobaric, where dp = 0 from the v.dp term.
 
  • Like
Likes Chestermiller and vanhees71
Thread ''splain this hydrostatic paradox in tiny words'
This is (ostensibly) not a trick shot or video*. The scale was balanced before any blue water was added. 550mL of blue water was added to the left side. only 60mL of water needed to be added to the right side to re-balance the scale. Apparently, the scale will balance when the height of the two columns is equal. The left side of the scale only feels the weight of the column above the lower "tail" of the funnel (i.e. 60mL). So where does the weight of the remaining (550-60=) 490mL go...
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Back
Top