riemannian
- 5
- 0
greetings . i have a couple of questions about the prime counting function .
when \pi _{0}(x) changes by 1, then it's logical to assume that it should happen at a prime argument . meaning :
\lim_{\xi\rightarrow 0}\pi _{0}(x+\xi )-\pi _{0}(x-\xi )=1
implies that x is a prime .
is this a true assumption ?
according to the literature, we can expand \pi_{0}(x) using the riemann R function .
R(x) = 1+\sum_{k=1}^{\infty}\frac{(ln x)^{k}}{k!k\zeta (k+1)}
\pi_{0}(x)= R(x)-\sum_{\rho} R(x^{\rho })-\frac{1}{lnx}-\frac{1}{\pi}tan^{-1}\left( \frac{\pi}{lnx}\right) = \sum_{k=1}^{\infty}\frac{(lnx)^{k}[1-\sum \rho^{k} ]}{k!k\zeta(k+1)}-\frac{1}{lnx}-\frac{1}{\pi}tan^{-1}\left( \frac{\pi}{lnx}\right)\rho being the nontrivial zeros of the zeta function .
is this correct ?? i mean , is the expansion correct ??
when \pi _{0}(x) changes by 1, then it's logical to assume that it should happen at a prime argument . meaning :
\lim_{\xi\rightarrow 0}\pi _{0}(x+\xi )-\pi _{0}(x-\xi )=1
implies that x is a prime .
is this a true assumption ?
according to the literature, we can expand \pi_{0}(x) using the riemann R function .
R(x) = 1+\sum_{k=1}^{\infty}\frac{(ln x)^{k}}{k!k\zeta (k+1)}
\pi_{0}(x)= R(x)-\sum_{\rho} R(x^{\rho })-\frac{1}{lnx}-\frac{1}{\pi}tan^{-1}\left( \frac{\pi}{lnx}\right) = \sum_{k=1}^{\infty}\frac{(lnx)^{k}[1-\sum \rho^{k} ]}{k!k\zeta(k+1)}-\frac{1}{lnx}-\frac{1}{\pi}tan^{-1}\left( \frac{\pi}{lnx}\right)\rho being the nontrivial zeros of the zeta function .
is this correct ?? i mean , is the expansion correct ??
Last edited: