space-time
- 218
- 4
In my recent studies of curvature, I worked with the Riemann tensor and the equation:
(\deltaV)a= A\muB\nuRab\mu\nuVb
Now previously, I worked in 2D with the 2 sphere. While doing so, I learned that if I set my x1 coordinate to be θ and my x2 coordinate to be ø, then the vectors that serve to be the legs of the loop that I am transporting around would be as follows:
A\mu = <θ, 0>
B\nu = <0, ø>
and then of course the vector that I parallel transport would be as follows:
Vb= <θ, ø>
Now this may work for 2 dimensions, but what if I have 3 or more dimensions? With only 2 vectors being the legs of the loop, there wouldn't be enough vectors for me to give each individual coordinate its own leg with every other component being 0 (as shown above with A\mu and B\nu).
How do I deal with this? Is it even a requirement for every coordinate to have its own leg that is reminiscent of a unit vector? Page 5 on the following PDF gave me the impression that it is a requirement:
http://www.physics.ucc.ie/apeer/PY4112/Curvature.pdf
Is it possible for one of the legs of the loop to have more than one type of coordinate in it (like A\mu = <r , θ, 0>) ?
(\deltaV)a= A\muB\nuRab\mu\nuVb
Now previously, I worked in 2D with the 2 sphere. While doing so, I learned that if I set my x1 coordinate to be θ and my x2 coordinate to be ø, then the vectors that serve to be the legs of the loop that I am transporting around would be as follows:
A\mu = <θ, 0>
B\nu = <0, ø>
and then of course the vector that I parallel transport would be as follows:
Vb= <θ, ø>
Now this may work for 2 dimensions, but what if I have 3 or more dimensions? With only 2 vectors being the legs of the loop, there wouldn't be enough vectors for me to give each individual coordinate its own leg with every other component being 0 (as shown above with A\mu and B\nu).
How do I deal with this? Is it even a requirement for every coordinate to have its own leg that is reminiscent of a unit vector? Page 5 on the following PDF gave me the impression that it is a requirement:
http://www.physics.ucc.ie/apeer/PY4112/Curvature.pdf
Is it possible for one of the legs of the loop to have more than one type of coordinate in it (like A\mu = <r , θ, 0>) ?