MHB R[X] is never a field .... Sharp, Exercise 1.29 .... ....

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading R. Y. Sharp's book: "Steps in Commutative Algebra" Cambridge University Press (Second Edition) ... ...

I am focused on Chapter 1: Commutative Rings and Subrings ... ...

I need some help with Exercise 1.29 ...

Exercise 1.29 reads as follows:View attachment 8169I am somewhat unsure about how to go about framing a valid and rigorous proof to demonstrate that $$R[X]$$ is never a field ...

But ... maybe the following is relevant ...

Consider $$a_1 X \in R[X]$$ ...

... then if $$R[X]$$ is a field ... there would be a polynomial $$b_0 + b_1 X + \ ... \ ... \ + b_n X^n$$ such that ...

... $$a_1 X ( b_0 + b_1 X + \ ... \ ... \ + b_n X^n ) = 1$$

That is, we would require

$$a_1 b_0 X + a_1 b_1 X^2 + \ ... \ ... \ + a_1 b_n X^{ n + 1} = 1$$ ... ... ... ... ... (1) ... But ... it is impossible for equation (1) to be satisfied as the term on the RHS has only a term in $$X^0$$ while the LHS only has terms in $$X$$ in powers greater than $$0$$ ...Does the above qualify as a formal and rigorous proof ... if not ... what would constitute a formal and rigorous proof ...Hope someone can help ...

Peter
 
Physics news on Phys.org
Peter said:
I am reading R. Y. Sharp's book: "Steps in Commutative Algebra" Cambridge University Press (Second Edition) ... ...

I am focused on Chapter 1: Commutative Rings and Subrings ... ...

I need some help with Exercise 1.29 ...

Exercise 1.29 reads as follows:I am somewhat unsure about how to go about framing a valid and rigorous proof to demonstrate that $$R[X]$$ is never a field ...

But ... maybe the following is relevant ...

Consider $$a_1 X \in R[X]$$ ...

... then if $$R[X]$$ is a field ... there would be a polynomial $$b_0 + b_1 X + \ ... \ ... \ + b_n X^n$$ such that ...

... $$a_1 X ( b_0 + b_1 X + \ ... \ ... \ + b_n X^n ) = 1$$

That is, we would require

$$a_1 b_0 X + a_1 b_1 X^2 + \ ... \ ... \ + a_1 b_n X^{ n + 1} = 1$$ ... ... ... ... ... (1) ... But ... it is impossible for equation (1) to be satisfied as the term on the RHS has only a term in $$X^0$$ while the LHS only has terms in $$X$$ in powers greater than $$0$$ ...Does the above qualify as a formal and rigorous proof ... if not ... what would constitute a formal and rigorous proof ...Hope someone can help ...

Peter

The proof is correct.
 
caffeinemachine said:
The proof is correct.
Thanks for confirming the proof caffeinemachine ... appreciate the help ...

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top