Rainfall drop velocity from a given height (not terminal)

AI Thread Summary
The discussion focuses on calculating the sub-terminal speed of raindrops using fluid and Newtonian mechanics principles. The original poster is struggling with a complex integral derived from the forces acting on the raindrop, specifically the balance between gravitational and drag forces. Suggestions include simplifying the problem by expressing the forces as a function of velocity and considering the difference between the current velocity and terminal velocity for better approximation. The conversation emphasizes the importance of knowing empirical constants and the potential for numerical solutions to introduce significant errors. Ultimately, the poster expresses satisfaction after resolving their issue.
uluru
Messages
4
Reaction score
0
hi everybody,

I posted this in an engineering forum but I think it's more relevant here, because it's really just a question of fluid and Newtonian mechanics.

I'm working on a project where I'm trying to measure raindrop parameters, and one thing I'm looking at is the sub-terminal speed of drops released from a certain height. The equation that I'm using is from http://staff.science.uva.nl/~jboxel/Publications/PDFs/Gent_98.pdf

The gist of the equation that I was considering is:

F = g*ρw*∏*d^3/6 - 3*∏*d*μ*V*Ct*Cd

where Ct = 1+0.16*Re^(2/3)

and Re = ρVD/μ;

and Cd = 1+a(We+b)^c - ab^c

where a,b,c are empirically derived constants and We = ρ*V^2*d/σ

Basically, when I put everything together and try to calculate fall velocity, I get stuck with a disgusting integral, because I use

V(t)=∫a(t) = (1/m)*∫F(t)

Does anybody have suggestions for how to approach this? I just want to make a model in matlab.. it seems like I could do some kind of step approach, because I looked at the integral and it's really nasty, but I don't know what to do, because I have V(t) on both sides...

Or if anybody knows of a simpler model presented in a paper, I could use that too. I just want to compare my data with a preexisting model; it's not critical to my project, but I think it's important.
 
Physics news on Phys.org
As I see it you need to write it in the from of a differential equation and Matlab will solve it (numericaly or otherwise):
Sum( Force( V(t) ) ) = mV'(t)
i.e. the sum of all the forces acting on the drop (drag ect.) - you need to write the those forces as a function of the drops velocity, equals the mass of the drop times acceleration (derivative of velocity with time).

Cheers.Roman.
 
The most obvious numerical solutions might accumulate significant errors.
If you're interested in the way it approaches terminal velocity, you should try working with the dependent variable being the difference between V and Vt. You might then be able to make suitable approximations to obtain an analytic solution for the asymptotic behaviour.
But it would require knowing the values of the constants and figuring out what terms can be ignored.
 
Sweet, i think I figured it oUt. Thanks
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top