1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Raising and lowering operators

  1. Jun 16, 2011 #1
    1. The problem statement, all variables and given/known data

    The quantum simple harmonic operator is described by the Hamiltonian:

    [itex]\hat{H}[/itex] = -[itex]\frac{h^{2}}{2m}[/itex][itex]\frac{d^{2}}{dx^{2}}[/itex] + [itex]\frac{1}{2}[/itex]m[itex]\omega^{2}[/itex]x[itex]^{2}[/itex]

    Show how this hamiltonian can be written in terms of the raising and lowering operators:

    [itex]\widehat{a}[/itex][itex]_{+}[/itex] = -[itex]\frac{h}{\sqrt{2m}}[/itex][itex]\frac{d}{dx}[/itex] + [itex]\sqrt{\frac{m}{2}}\omega[/itex]x

    [itex]\widehat{a}[/itex][itex]_{-}[/itex] = [itex]\frac{h}{\sqrt{2m}}[/itex][itex]\frac{d}{dx}[/itex] + [itex]\sqrt{\frac{m}{2}}\omega[/itex]x

    The "h" in the above eqns are actually "h-bars"

    2. Relevant equations


    3. The attempt at a solution

    [itex]\widehat{a}[/itex][itex]_{+}[/itex][itex]\widehat{a}[/itex][itex]_{-}[/itex] = (-[itex]\frac{h}{\sqrt{2m}}[/itex][itex]\frac{d}{dx}[/itex] + [itex]\sqrt{\frac{m}{2}}\omega[/itex])( [itex]\frac{h}{\sqrt{2m}}[/itex][itex]\frac{d}{dx}[/itex] + [itex]\sqrt{\frac{m}{2}}\omega[/itex]x) = [itex]\hat{H}[/itex]

    But the solution is in the picture with a red highlight of where my solution differs and i cannot work out how that extra highlighted part is added

    Attached Files:

    Last edited: Jun 16, 2011
  2. jcsd
  3. Jun 16, 2011 #2

    George Jones

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Let the second line of your expression for [itex]\widehat{a}[/itex][itex]_{+}\widehat{a}[/itex][itex]_{-}[/itex] operate on a function [itex]f\left(x\right)[/itex].
  4. Jun 21, 2011 #3
    Oh that's so simple haha thankyou
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook