MHB Rank & Nullity: 3x3 Matrix w/ Plane Origin & LD Vectors

  • Thread starter Thread starter Swati
  • Start date Start date
  • Tags Tags
    rank
Swati
Messages
16
Reaction score
0
1.(a) Give an example of 3*3 matrix whose column space is a plane through the origin in 3-space
(b) what kind of geometry object is the null space and row space of your matrix

2. Prove that if a matrix A is not square, then either the row vectors or the column vectors of A are linearly dependent.
 
Physics news on Phys.org
#2 rowrank(A) = columnrank(A) -- seems to follow immediately.
 
we have to prove. please explain clearly.
 
Swati said:
1.(a) Give an example of 3*3 matrix whose column space is a plane through the origin in 3-space
(b) what kind of geometry object is the null space and row space of your matrix

2. Prove that if a matrix A is not square, then either the row vectors or the column vectors of A are linearly dependent.
I assume that the entries of the matrices are reals.
Q2. Consider a 2x3 matrix. Let its row vectors be (a,b), (c,d),(e,f). So we got 3 vectors from $\mathbb{R}^2$. They have to be linearly dependent since dimension of $\mathbb{R}^2$ is 2. Can you generalize?
 
Swati said:
we have to prove. please explain clearly.
More effort on your part is required. What have you tried and what don't you understand.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top