MHB Rayan's question at Yahoo Answers (Green's Theorem)

AI Thread Summary
Green's Theorem is applied to calculate the work done by the force F on a particle moving counterclockwise around the closed path C defined by r = 2 cos(θ). The force F is given as F(x,y) = (e^x − 9y)i + (e^y + 4x)j. The path C corresponds to a circle with the equation (x-1)² + y² = 1, and the area D is the disk bounded by C. The work W is computed as 13 times the area of D, resulting in W = 13π. This calculation demonstrates the effective use of Green's Theorem in evaluating work done by vector fields.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Use Green's Theorem to calculate the work done by the force F on a particle that is moving counterclockwise around the closed path C.
F(x,y) = (e^x − 9y)i + (e^y + 4x)j
C: r = 2 cos(θ)

Here is a link to the question:

Use Green's Theorem to calculate the work done by the force F? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Rayan,

Easily proved, $C:r=2\cos \theta$ is the circle $C:(x-1)^2+y^2=1$. If $D$ is the disk with boundary $C$, then by the Green's theorem, $$W=\int_C(e^x − 9y)dx + (e^y + 4x)dy=\iint_D(Q_x-P_y)dxdy=\iint_D(4+9)dxdy\\=13\iint_Ddxdy=13\mbox{Area }(D)=13\cdot \pi\cdot 1^2=\boxed{\;13\pi\;}$$
If you have further questions you can post them in the http://www.mathhelpboards.com/f10/ section.http://www.mathhelpboards.com/f10/
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top