MHB Rayan's question at Yahoo Answers (Green's Theorem)

AI Thread Summary
Green's Theorem is applied to calculate the work done by the force F on a particle moving counterclockwise around the closed path C defined by r = 2 cos(θ). The force F is given as F(x,y) = (e^x − 9y)i + (e^y + 4x)j. The path C corresponds to a circle with the equation (x-1)² + y² = 1, and the area D is the disk bounded by C. The work W is computed as 13 times the area of D, resulting in W = 13π. This calculation demonstrates the effective use of Green's Theorem in evaluating work done by vector fields.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Use Green's Theorem to calculate the work done by the force F on a particle that is moving counterclockwise around the closed path C.
F(x,y) = (e^x − 9y)i + (e^y + 4x)j
C: r = 2 cos(θ)

Here is a link to the question:

Use Green's Theorem to calculate the work done by the force F? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Rayan,

Easily proved, $C:r=2\cos \theta$ is the circle $C:(x-1)^2+y^2=1$. If $D$ is the disk with boundary $C$, then by the Green's theorem, $$W=\int_C(e^x − 9y)dx + (e^y + 4x)dy=\iint_D(Q_x-P_y)dxdy=\iint_D(4+9)dxdy\\=13\iint_Ddxdy=13\mbox{Area }(D)=13\cdot \pi\cdot 1^2=\boxed{\;13\pi\;}$$
If you have further questions you can post them in the http://www.mathhelpboards.com/f10/ section.http://www.mathhelpboards.com/f10/
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top