Real Analysis - Riemann Integral Proof

Click For Summary

Discussion Overview

The discussion revolves around the proof of the Riemann integral, specifically focusing on how to incorporate limits into the definitions and properties of Riemann integrals. Participants explore the implications of continuity and the bounding of integrals within this context.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant expresses confusion about incorporating limits into the definition of a Riemann integral and seeks guidance on the appropriate approach.
  • Another participant proposes a method involving the continuity of the function at zero and suggests breaking the integral into two parts to establish bounds.
  • A question is raised regarding the use of a maximum value \( M \) for bounding the integral, with a suggestion to use epsilon directly instead.
  • One participant challenges the proposed bounding method by stating that it is incorrect to assume the function can be bounded by epsilon outside a certain interval, emphasizing the necessity of breaking the integral into parts.
  • A later reply reiterates the challenge to the bounding method, confirming the previous point and expressing gratitude for the clarification.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the bounding methods for the integral. There are competing views on the appropriateness of using maximum values versus epsilon for bounding the integrals, and the discussion remains unresolved.

Contextual Notes

The discussion highlights limitations in assumptions regarding the behavior of the function outside certain intervals and the implications of continuity on bounding integrals. There are unresolved mathematical steps related to the justification of the bounding methods used.

joypav
Messages
149
Reaction score
0
View attachment 6476

I have no idea how to incorporate the limit into the basic definitions for a Riemann integral? All we have learned so far is how to define a Riemann integral and the properties of Riemann integrals. What should I be using for this?
 

Attachments

  • RealAnalysisHW1.jpg
    RealAnalysisHW1.jpg
    4.7 KB · Views: 131
Physics news on Phys.org
Welcome, joypav! (Wave)

Without loss of generality, assume $f(0) = 0$. For the result is equivalent to $\lim\limits_{n\to \infty} \int_0^1 g(x^n)\, dx = 0$, where $g(t) = f(t) - f(0)$. Let $\epsilon > 0$. By continuity of $f$ at $0$, there is a positive number $\delta\in (0,1)$ such that for all $t\in [0,1]$, $\lvert t\vert < \delta$ implies $\lvert f(t)\rvert < \epsilon$. Now write

$$\int_0^1 f(x^n)\, dx = \int_0^{\sqrt[n]{\delta}} f(x^n)\, dx + \int_{\sqrt[n]{\delta}}^1 f(x^n)\, dx$$

Since $\lvert f\rvert$ is continuous on $[0,1]$, it has a maximum value, $M$. Show that $\int_{\sqrt[n]{\delta}}^1\, f(x^n)\, dx$ is bounded by $M(1 - \sqrt[n]{\delta})$, and that $\int_0^{\sqrt[n]{\delta}} f(x^n)\, dx$ is bounded by $\epsilon \sqrt[n]{\delta}$. Then

$$\left\lvert \int_0^1 f(x^n)\, dx \right\rvert \le \epsilon \sqrt[n]{\delta} + M(1 - \sqrt[n]{\delta})$$

Letting $\epsilon \to 0^+$, we obtain

$$\left\lvert \int_0^1 f(x^n)\, dx\right\rvert \le M(1 - \sqrt[n]{\delta})$$

Finish the argument using the squeeze theorem.
 
I see. So it relies mostly on the continuity of f on the interval. We can prove the bounds using that the integral <= M(b-a).

I do have a question though.. why do we not bound the integral by epsilon(1-(delta)^1/n) and epsilon(delta)^1/n. Then when you add up the two integrals you would get that the whole integral from 0 to 1 is <= 2epsilon. And because of continuity, we can make this 0 by letting epsilon approach 0.

I guess my question is, why do we use M at all? Doesn't epsilon bound f(t)?

(Sorry, I'm typing on my phone, so can't use the correct symbols.)
 
We cannot bound the second integral by $\epsilon (1-\delta^{1/n})$, because it is not true that $\lvert f(t)\rvert < \epsilon $ whenever $\lvert t\rvert \ge \delta $. If we had that, then there would be no need to break up the integral into two parts, as we've done here.
 
Euge said:
We cannot bound the second integral by $\epsilon (1-\delta^{1/n})$, because it is not true that $\lvert f(t)\rvert < \epsilon $ whenever $\lvert t\rvert \ge \delta $. If we had that, then there would be no need to break up the integral into two parts, as we've done here.

I see. Thank you
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K