Real Numbers: Axioms or Theorem?

LikeMath
Messages
62
Reaction score
0
Hi there,

In most books that I saw, the set of real numbers under the usual sum and product is considered as a Field and say that's by the field axioms. But I have surprised when I have seen, it is a theorem. The question, are these axioms? or can they be proved?

Thank you very much.
 
Physics news on Phys.org
What are "axioms" and what are "theorems" depends upon what level you are working at.

We define a field to be a set of objects, S, together with two binary operations, + and *, satisfying the "field axioms".

We can the prove, as a theorem, that a particular set, with given binary operations, such as the rational numbers or real numbers, satisfy those axioms.
 
Thank you
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top