Real Solutions for 2^x-x^2=1: Finding Roots and Critical Points

  • Thread starter Thread starter juantheron
  • Start date Start date
juantheron
Messages
243
Reaction score
1
No. of Real solution of ##2^x-x^2 = 1##

Solution (Given as):: Clearly ##x = 0## and ##x = 1## are solution of Given equation.

Formal; define ##f(x) = 2^x - x^2 - 1##, so ##f'(x) = 2^x\ln 2 - 2x##, ##f''(x) = 2^x\ln^2 2 - 2##,

##f'''(x) = 2^x\ln^3 2 > 0##. Study the variation, in order to estimate the values of the roots and

critical points

Now I Did not Under How can we check Nature of ##f(x)## using ##f^{'''}(x)##

Please Help me

Thanked
 
Physics news on Phys.org
Note that f'''(x) is always positive. This tells you something about f''(x).

Draw a simple graph of these derivatives.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top