Recast of a conformal line element

  • I
  • Thread starter silverwhale
  • Start date
In summary, "Recast of a conformal line element" discusses the transformation of a conformal line element in the context of differential geometry and general relativity. It explores how conformal mappings can alter the geometric properties of spacetime while preserving angles, leading to new insights into the structure of spacetime and the behavior of physical fields. The work emphasizes the mathematical formulations and implications of these transformations, providing a framework for analyzing various geometrical scenarios in theoretical physics.
  • #1
silverwhale
84
2
TL;DR Summary
In Birrell an dDavies QFT on CS a rewrite of a conformal line element is done. But this recasting seems to me not to be correct.
Hello PhysicsForums-Readers,

On page 59 of Birrells and Davies QFT on CS, the line element ##ds^2 = dt^2 - a(t)^2 dx^2##, where ##a(t)## is some conformal factor defined as ##a({\eta}) = dt/d{\eta}##.
Then in 3.83 the equation is rewritten to ##ds^2 = a(\eta)^2 (d^2 \eta - dx^2)##. IMHO this cannot be true.
But how can the author recast eqaution 3.81 (mentioned above) to this one? maybe because the map is a conformal map??

Can anyone enlighten me on this rewrite? Thank you!
Silverwhale
 
Physics news on Phys.org
  • #2
silverwhale said:
On page 59 of Birrells and Davies QFT on CS, the line element ##ds^2 = dt^2 - a(t)^2 dx^2##, where ##a(t)## is some conformal factor defined as ##a({\eta}) = dt/d{\eta}##.
No, ##\eta## is defined by this relation.
silverwhale said:
Then in 3.83 the equation is rewritten to ##ds^2 = a(\eta)^2 (d^2 \eta - dx^2)##. IMHO this cannot be true.
You just make a change of variables, instead of ##t## use ##\eta##. Substituting ##dt = a(\eta)d\eta## in the first equation, gives you this.
 
  • #3
martinbn said:
No, ##\eta## is defined by this relation.

You just make a change of variables, instead of ##t## use ##\eta##. Substituting ##dt = a(\eta)d\eta## in the first equation, gives you this.
Thank you martinbn for your answer.

In page 59, the definition is ##d \eta = dt/a##, that I do know; from which ##a(\eta) * d\eta = dt## follows (which I wrote), right?

Before I start explaining my problem (I hope this time better), We should not forget that the factor ##a(t)## depends on the variable ##t## as does ##dt^2##.

Now, If we change the variable ##t## by ##\eta## in the line element, then we should get: $$ds^2 = d\eta^2 - a^2(\eta) dx^2.$$
That is not 3.83..

Next, If we subsitute in 3.81 ##dt## by ## a(\eta) d\eta##, then $$ ds^2 = a^2(\eta) d\eta^2 - a^2(t) dx^2.$$ the problematic factor ##a^2(t)## still appears.

Last, if we take each term by itself in 3.81 and make a change of variables just in the second term, and substitute in the first, then yes we get 3.83, but that contradicts IMHO the definition 3.81 of the conformal line element ##ds^2## where ##a(t)## changes, when ##dt## changes in the coordinate axis..
Finally, saying ##a(t)## is the same as ##a(\eta)## does not make sense to me as ##a## should note the same map..
Silverwhale
 
  • #4
No, i am not saying replace the letter ##t## with the letter ##\eta##, that would be usleless. The relation ##d\eta=\frac{dt}a## gives you, if you integrate it, each of the ##t## and ##\eta## as a function of the other, say ##t=f(\eta)##. Then you make this change of variables. You keep the ##x## and you change ##t## to ##\eta## using ##t=f(\eta)##.
 
  • #5
Yes, I do get your point.
But then, I get ##a(f(\eta))## which ist not equivalent (as a function) to ## a(\eta)## That is my problem. Both are called ##a##, but they are two different functions..
 
Back
Top