Reductio Ad Absurdum: Understanding Contradictions

  • Thread starter Thread starter chemistry1
  • Start date Start date
chemistry1
Messages
108
Reaction score
0
Hi, I have a little question concerning contradictions :

If I have a statement "A" that I want to prove, and only have the possibility for it to be True or False.

After some manipulations, I arrive at some contradiction. (Here's where my question begins.)

How can we know that a contradiction is enough to be sure at 100 % that a statement is not correct?

Is it because in Mathematics, for a thing to be True or False, it must always be ALWAYS "working" without arriving at some contradiction ? (Mathematical ideas must always work, and not sometimes yes, sometimes no.)

I just want to be sure of thinking of it in the right way, corrections would be greatly appreciated ! Thank you !
 
Mathematics news on Phys.org
How can you know that a contradiction is enough? After you've checked to make sure you didn't make a mistake.

Mathematics cannot tolerate even one contradiction. With one single contradiction (X and both not X are true), *all* of mathematics falls apart. It's called the principle of explosion. Wikipedia article: http://en.wikipedia.org/wiki/Principle_of_explosion.

That said, there is no contradiction if you've just made a mistake somewhere. You've made a mistake, that's all. Suppose that you find a contradiction as a consequence of some initial assumption and verify that every step after making some initial assumption is solid. That doesn't mean you didn't make a mistake. You did. The mistake was making that initial assumption! The initial assumption has to be incorrect. By assuming something and then showing that this leads to a contradiction, you have but no choice but to reject that initial assumption.
 
AHhhhh! This is clear now ! It make sense lol

Thank you !
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top