I Relativistic Velocity Addition: Calculating Electron Speed

lindberg
Messages
40
Reaction score
20
TL;DR Summary
Does the relativistic velocity addition apply to De Broglie matter waves?
If we imagine launching an electron wave in a reference frame S with speed v, should someone viewing the electron from frame S1, which is in inertial motion referring to S, use the relativistic velocity addition to calculate the speed of the electron?
 
Physics news on Phys.org
First of all, any thread on de Broglie matter waves need a compulsory disclaimer about it being a concept on the way to quantum mechanics that has been superceded since about a hundred years ago.

With that out of the way, relativistic velocity composition holds for any speeds. However you need to choose what you mean by ”speed” when it comes to a wave that is not lightlike: group or phase velocity?
 
  • Like
Likes vanhees71, lindberg and Vanadium 50
To add to Orodruin's message, matter waves are not just a step on the way to quantum mechanics, it's a non-relativistic step on the way to non-relativistic quantum mechanics. Mixing this with relativity is unlikely to be sensible.
 
  • Like
Likes vanhees71 and lindberg
lindberg said:
Summary: Does the relativistic velocity addition apply to De Broglie matter waves?

If we imagine launching an electron wave in a reference frame S with speed v, should someone viewing the electron from frame S1, which is in inertial motion referring to S, use the relativistic velocity addition to calculate the speed of the electron?

The group velocity of the matter wave is equal to the velocity of the electron. As already mentioned by Orodruin, the relativistic velocity composition holds for any speeds. Accordingly, the "relativistic velocity addition" formula can be applied to both, the group velocity and the phase velocity.

W. Rindler said:
In a beautiful application of SR, de Broglie proposed the following relation between the particle's 4-momentum ##\mathbf P## and the wave 4-vector of the associated wave ... :
$$ \mathbf P= h \mathbf L, \ \ \text{that is,} \ \ E(\frac{\mathbf u}{c^2},\frac{1}{c})=h\nu(\frac{\mathbf n}{w},\frac{1}{c}). \ \ \ \ \ \ \ \text{(51)}$$
In fact, if Planck's relation (50) is to be maintained for a material particle and its associated wave, then (51) is inevitable. For then the 4th components of the 4-vectors on either side of (51) are equal; by our earlier "zero-component lemma", the entire 4-vectors must therefore be equal! From (51) it then follows that the wave travels in the direction of the particle (##\mathbf n## ∝ ##\mathbf u##), but with a larger velocity ##w##, given by de Broglie's relation
$$uw=c^2, \ \ \ \ \ \ \ \text{(52)}$$
as can be seen by comparing the magnitudes of the leading 3-vectors. (However, the group velocity of the wave, which carries the energy, can be shown to be still ##u##.) The wave must necessarily travel at a speed other than the particle unless that speed is ##c##, for waves and particles aberrate differently, and a particle comoving with its wave would slide across it sideways in another frame.
Source:
http://www.scholarpedia.org/article/Special_relativity:_mechanics#Particles_and_Waves

Assume an electron moving in the unprimed frame with velocity ##u## in x-direction. You can transform it's velocity to a primed frame, which is moving with ##v## in x-direction, by applying the "relativistic velocity addition" formula:

##u' = u \oplus (-v) = \frac{u-v}{1-uv/c^2}##

The phase velocity in the unprimed frame is ##w = \frac{c^2}{u}##. If you apply the "relativistic velocity addition" formula to this phase velocity, then you get:

##w' = w \oplus (-v) = \frac{(c^2/u)-v}{1-(c^2v/uc^2)} = \frac{1-uv/c^2}{(u/c^2)-(v/c^2)} = c^2/u'##, as it should be.
 
Last edited:
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Back
Top