- #1

- 32

- 0

[itex]A=\sum_{n=0}^\infty a_n[/itex]

[itex]B=\sum_{n=0}^\infty b_n[/itex]

and I have estimates for the remainders of each one:

[itex]\sum_{n=N}^\infty a_n \le R^N_A[/itex]

[itex]\sum_{n=N}^\infty b_n \le R^N_B[/itex]

Consider the product series

[itex]AB=\sum_{n=0}^\infty c_n[/itex]

where [itex]c_n=\sum_{i=0}^n a_i b_{n-i}[/itex]. Is it possible to derive an estimate for the remainder of [itex]C[/itex] based on the ones for [itex]A[/itex] and [itex]B[/itex]?