I Requirement of Holonomic Constraints for Deriving Lagrange Equations

AI Thread Summary
The discussion centers on the necessity of holonomic constraints for deriving Lagrange equations from d'Alembert's principle. It highlights that the transition to the equation involving partial derivatives of the Lagrangian requires the assumption of holonomic constraints, as non-holonomic constraints lead to virtual displacements that may not be perpendicular to the body's trajectory. The conversation suggests that while holonomic constraints simplify the derivation, non-holonomic constraints can also be incorporated effectively if treated correctly in configuration space. Participants note that extensive discussions on this topic, including vakonomic dynamics, can be found in the forum. Understanding the mathematical connection between constraints and virtual displacements is crucial for grasping the derivation process.
deuteron
Messages
64
Reaction score
14
TL;DR Summary
Why is it required for the constraints to be holonomic to derive the Euler-Lagrange equations of motion?
While deriving the Lagrange equations from d'Alembert's principle, we get from $$\displaystyle\sum_i(m\ddot x_i-F_i)\delta x_i=0\tag{1}$$ to $$\displaystyle\sum_k (\frac {\partial\mathcal L}{\partial\ q_k}-(\frac d {dt}\frac {\partial\mathcal L}{\partial\dot q_k}))\delta q_k=0\tag{2}$$

However, from the above step, we get to the below step only after assuming holonomic constraints:
$$(\frac {\partial\mathcal L}{\partial\ q_k}-(\frac d {dt}\frac {\partial\mathcal L}{\partial\dot q_k})=0.\tag{3}$$

Why is it that we have to assume holonomic constraints for that transition? My guess is that it has something to do with that if the constraints are not holonomic, then the virtual displacement are not always perpendicular to the trajectory of the body, but I can't see the mathematical connection between these.
 
Physics news on Phys.org
There is no restriction to holonomic constraints. You can also treat non-holonomic constraints. If done right, i.e., as a constraint on the "allowed" variations of the trajectories in configuration space, you get the same equations as from d'Alembert's principle. We have a lot of discussions on this in this forum. Just search for "vakonomic dynamics" ;-).
 
  • Like
Likes PeroK and deuteron
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
I passed a motorcycle on the highway going the opposite direction. I know I was doing 125/km/h. I estimated that the frequency of his motor dropped by an entire octave, so that's a doubling of the wavelength. My intuition is telling me that's extremely unlikely. I can't actually calculate how fast he was going with just that information, can I? It seems to me, I have to know the absolute frequency of one of those tones, either shifted up or down or unshifted, yes? I tried to mimic the...
Back
Top