Resources on Scientific Careers/Graduate School

Simfish
Gold Member
Messages
811
Reaction score
2
http://sciencecareers.sciencemag.org/ => Science Magazine's Careers section

http://www.nature.com/naturejobs/ => Nature's Careers section

http://chronicle.com => Chronicle of Higher Education - not specific to science, but still useful at times

http://nsf.gov/publications/ => National Science Foundation - very interesting publications and statistics

http://www.aip.org/ => American Institute of Physics - information similar to NSF's, and more specific to physics

http://aas.org/career => specific for astronomy

http://sciencewatch.com/ - tracks trends in global research, and identifies what's potentially hot

http://www.phds.org - NRC rankings

http://isihighlycited.com/ - highly cited researchers

I also have a lot more at http://del.icio.us/inquilinekea/gradschool
 
Mathematics news on Phys.org
IOP also has a very good career section:
http://www.iop.org/careers/index.html
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top