I Resulting force on a chamfered pneumatic piston

Click For Summary
The discussion centers on the forces acting on a chamfered pneumatic piston, specifically how the chamfer affects the resulting force. It is established that the force on the piston is calculated using the formula F = P x a, where P is pressure and a is the area of the piston. The introduction of a chamfer increases the surface area but does not change the net downward force because the projected area remains the same. The conclusion is that the chamfer can effectively be ignored in calculations, as it does not alter the total force exerted by the pneumatic system. Overall, the impact of the chamfer on the force is negligible.
inkblotch
Messages
5
Reaction score
2
TL;DR
What happens to the resulting force in a pneumatic cylinder, if the piston inside were chamfered.
I was reading up on forces on hydraulic/pneumatic cylinders, and I've been thinking of this for a while:

So for a pneumatic cylinder, the force on the piston is simply:
P = F/a
F = P x a
where a = area of the piston that the air pressure is acting on.

So what would happen if the piston is chamfered, thus increasing the surface area?
pistons.png

See above, (red circles are o-rings). In a closed system, my guess is :
  1. The overall volume has increased, decreasing the pressure inside
  2. However, surface area is increased due to the chamfer
  3. Therefore the resulting downward force is the same.
Is this idea correct, or have I missed something?
Edit : The next step is, given the same air pressure, how could we estimate the increase in downward force?
 
Last edited:
Physics news on Phys.org
The pressure acts normal to the surface, so the net effect of increased surface is zero (since only the downward component of pressure matters), and the product of downward component times area is the same as total pressure times projected area.
 
So it means the chamfer can just be ignored, since the projected area of the chamfer + the area of the flat surface is the same as just the area of the completely flat piston?
 
inkblotch said:
So it means the chamfer can just be ignored, since the projected area of the chamfer + the area of the flat surface is the same as just the area of the completely flat piston?
Yes
 
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
15
Views
414
Replies
23
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K